

Lecture 10

Interval Trees

Source: *Introduction to Algorithms*, CLRS

Interval

Interval

Defn: An interval $[t_1, t_2]$ is an object i such that:

Interval

Defn: An interval $[t_1, t_2]$ is an object i such that:

- t_1 and t_2 are integers such that $t_1 \leq t_2$.

Interval

Defn: An interval $[t_1, t_2]$ is an object i such that:

- t_1 and t_2 are integers such that $t_1 \leq t_2$.
- $i.\text{low} = t_1$ and $i.\text{high} = t_2$.

Interval

Defn: An interval $[t_1, t_2]$ is an object i such that:

- t_1 and t_2 are integers such that $t_1 \leq t_2$.
- $i.\text{low} = t_1$ and $i.\text{high} = t_2$.

Defn: We say intervals i and i' **overlap** if $i \cap i' \neq \emptyset$.

Interval

Defn: An interval $[t_1, t_2]$ is an object i such that:

- t_1 and t_2 are integers such that $t_1 \leq t_2$.
- $i.\text{low} = t_1$ and $i.\text{high} = t_2$.

Defn: We say intervals i and i' **overlap** if $i \cap i' \neq \emptyset$.

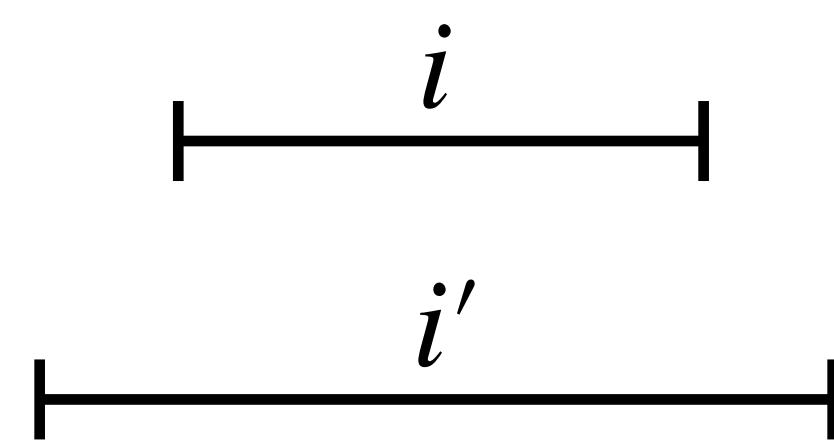
Example: [5,8] and [6,9] are overlapping. [3,5] and [7,10] are non-overlapping.

Testing Overlapping of Intervals

Testing Overlapping of Intervals

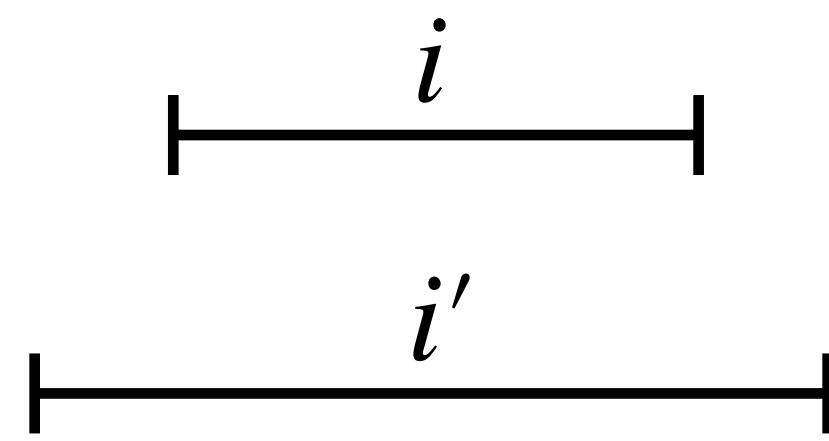
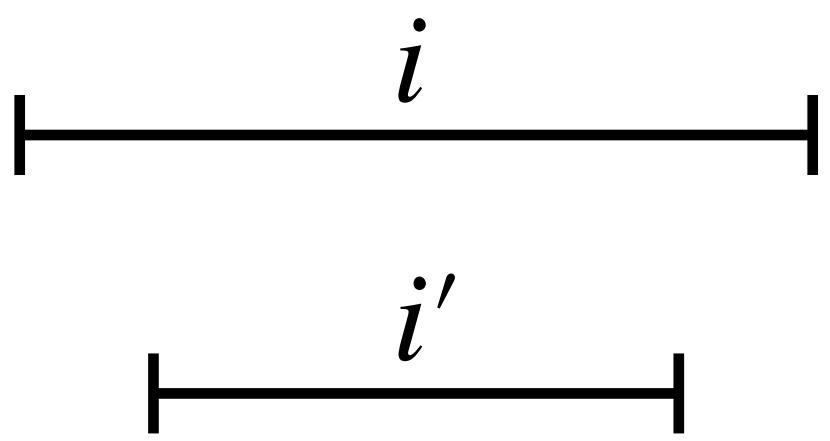
Overlapping intervals

Testing Overlapping of Intervals



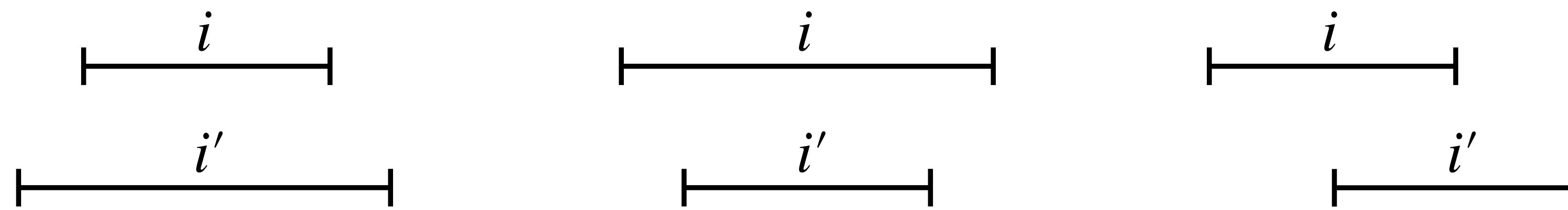
Overlapping intervals

Testing Overlapping of Intervals



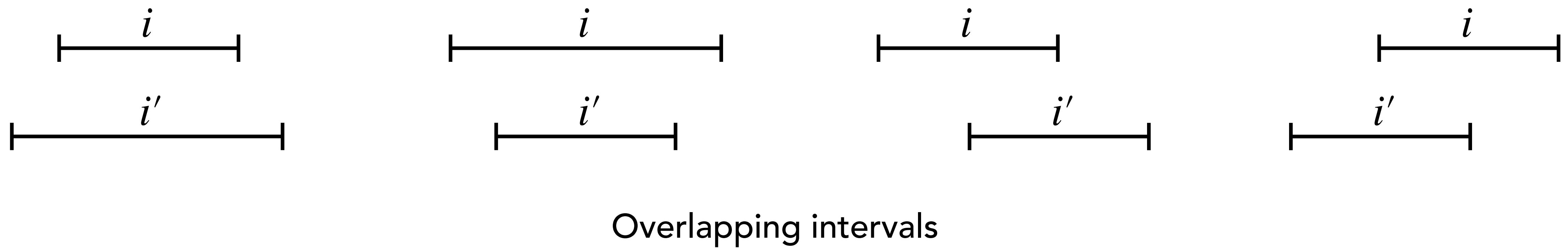
Overlapping intervals

Testing Overlapping of Intervals

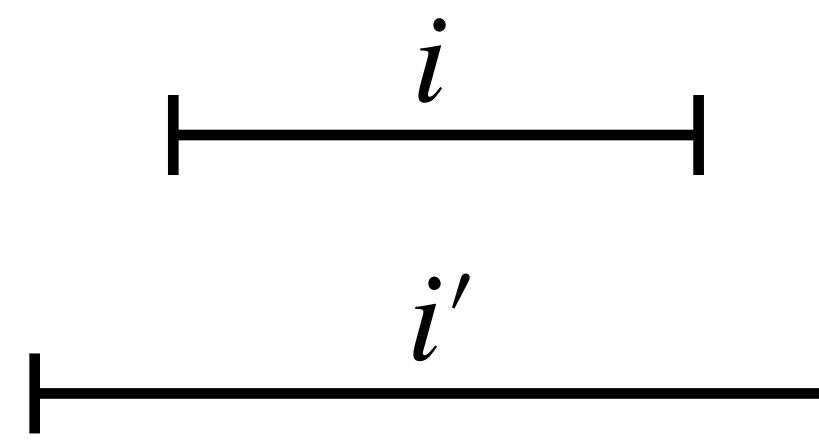
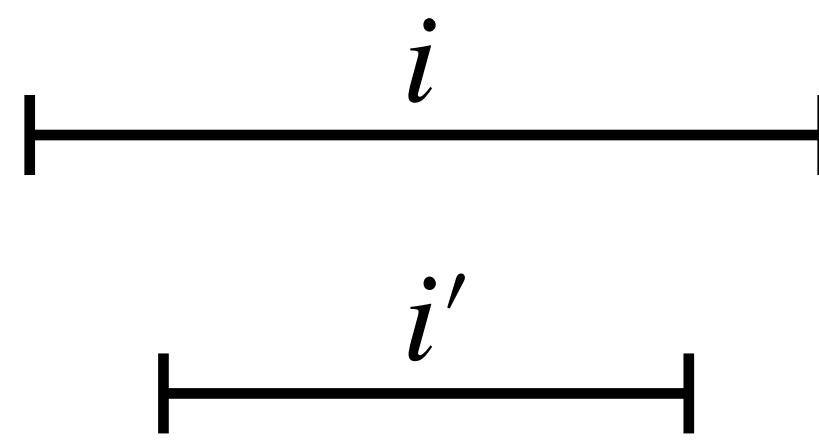
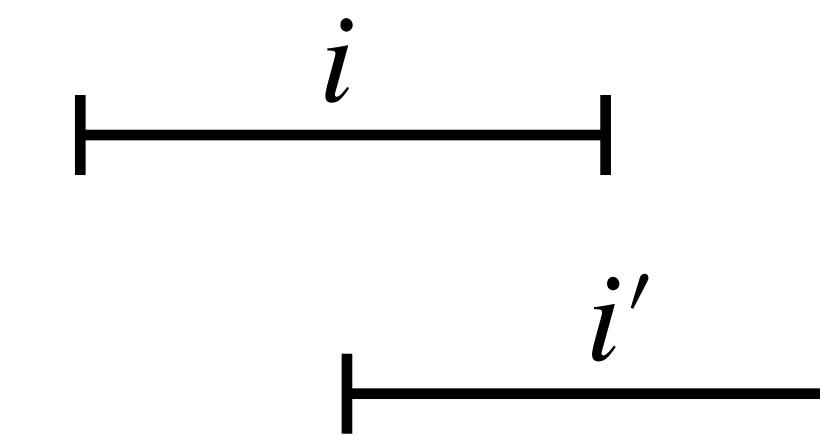
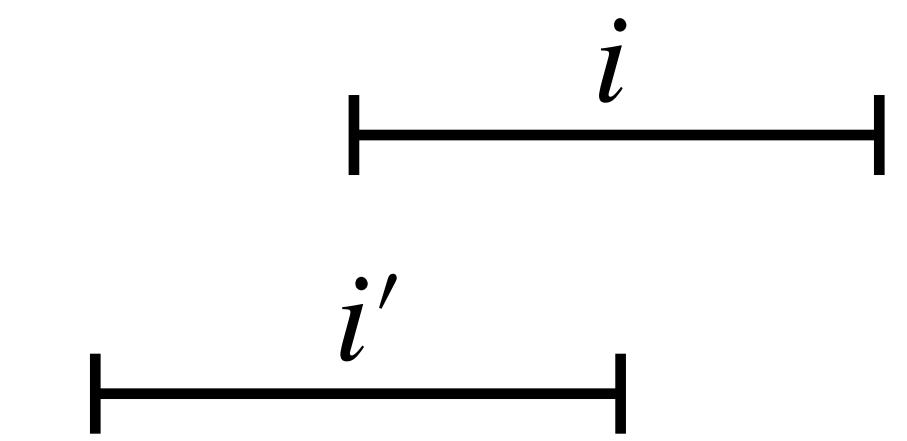


Overlapping intervals

Testing Overlapping of Intervals



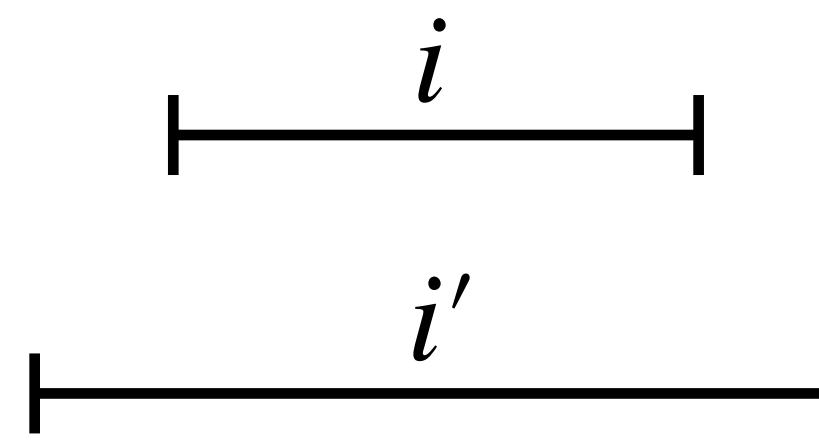
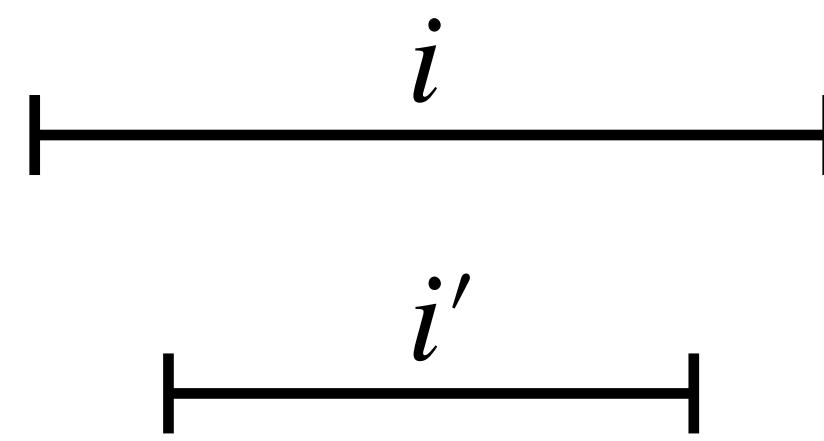
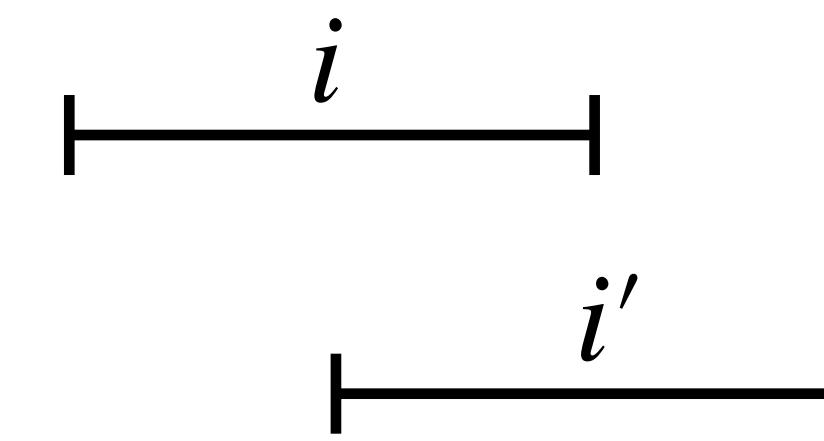
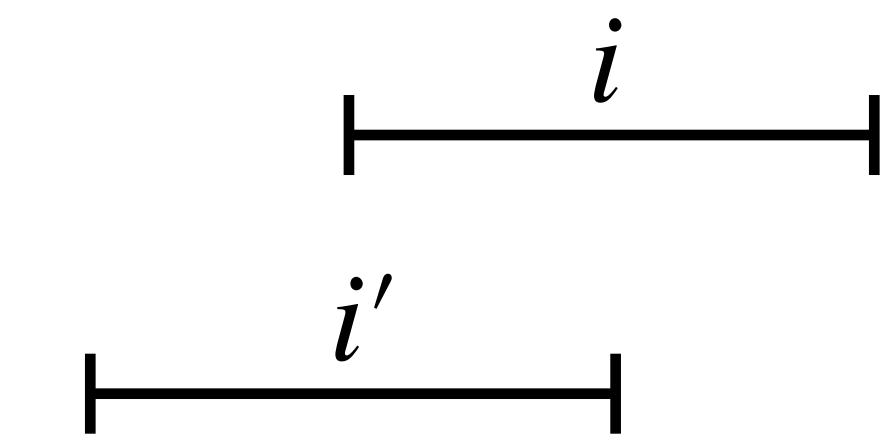
Testing Overlapping of Intervals



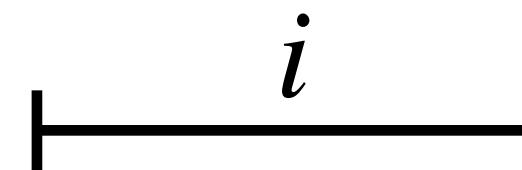
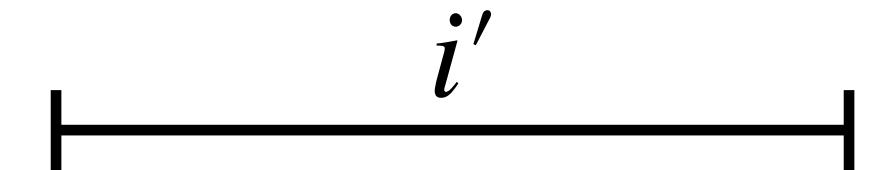
Overlapping intervals

Non-overlapping intervals

Testing Overlapping of Intervals

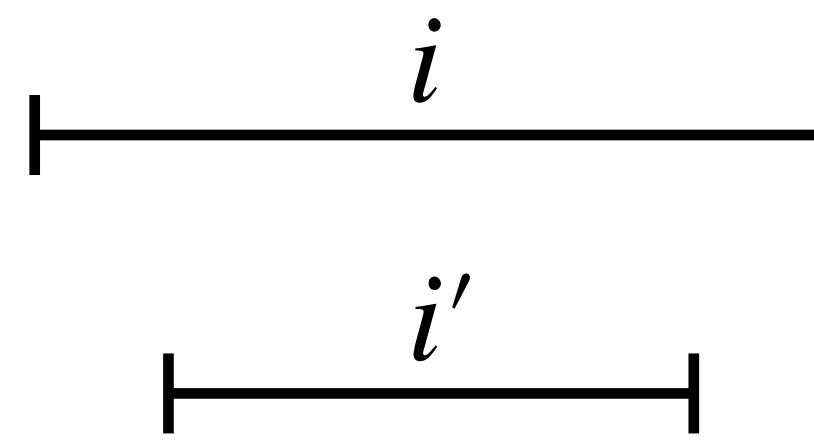
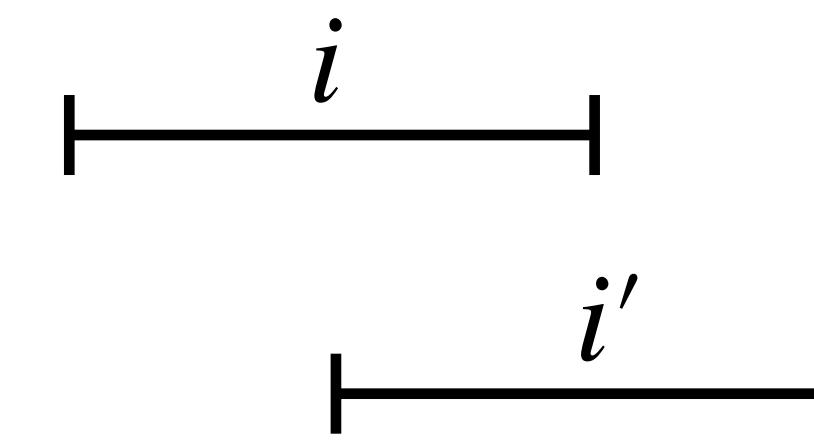
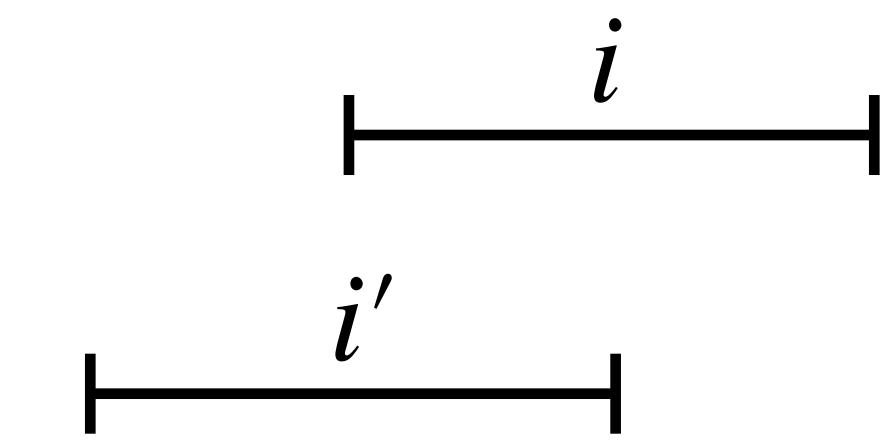


Overlapping intervals

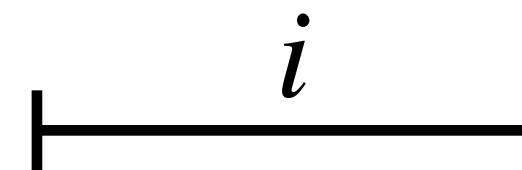
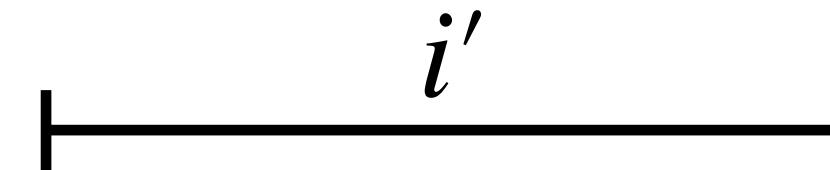
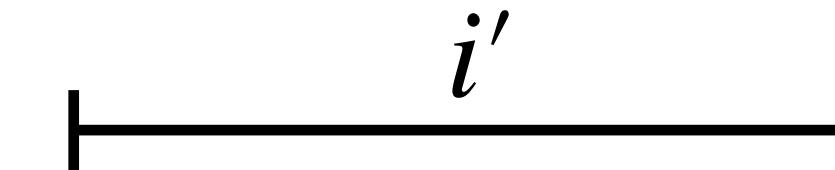
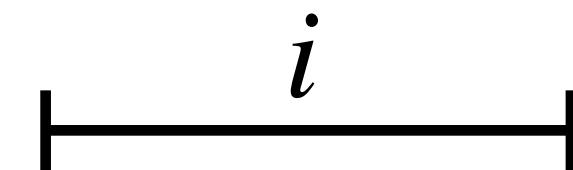


Non-overlapping intervals

Testing Overlapping of Intervals



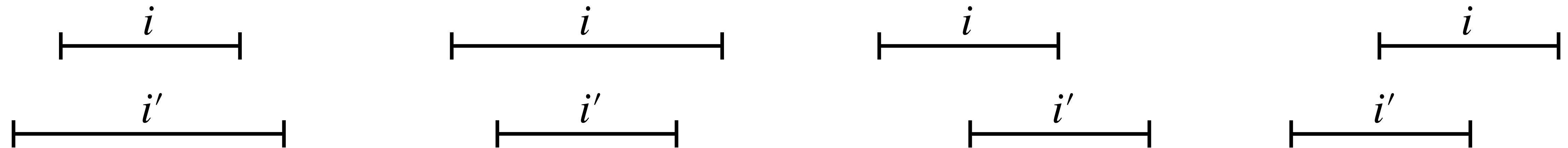
Overlapping intervals



Non-overlapping intervals

Testing Overlapping of Intervals

Defn: Two intervals i and i' **do not overlap** if and only if $i.\text{high} < i'.\text{low}$ or $i'.\text{high} < i.\text{low}$.

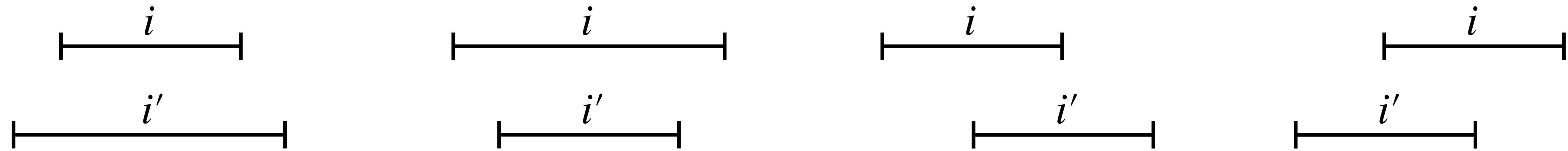


Overlapping intervals

Non-overlapping intervals

Testing Overlapping of Intervals

Defn: Two intervals i and i' **overlap** if and only if $i.\text{low} \leq i'.\text{high}$ and $i'.\text{low} \leq i.\text{high}$.



Overlapping intervals

Non-overlapping intervals

Interval Trees

Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x contains an interval $x.int$.

Interval Trees

Interval Trees is a form of **RB-tree** used to maintain a **dynamic set**, where every element x contains an interval $x.int$. Interval tree supports the following operations:

Interval Trees

Interval Trees is a form of **RB-tree** used to maintain a **dynamic set**, where every element x contains an interval $x.int$. Interval tree supports the following operations:

- **Interval-Insert(T, x)**

Interval Trees

Interval Trees is a form of **RB-tree** used to maintain a **dynamic set**, where every element x contains an interval $x.int$. Interval tree supports the following operations:

- **Interval-Insert(T, x)**
- **Interval-Delete(T, x)**

Interval Trees

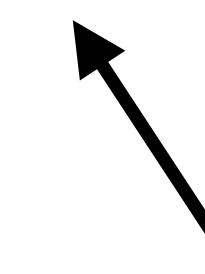
Interval Trees is a form of **RB-tree** used to maintain a **dynamic set**, where every element x contains an interval $x.int$. Interval tree supports the following operations:

- **Interval-Insert(T, x)**
- **Interval-Delete(T, x)**
- **Interval-Search(T, i)**

Interval Trees

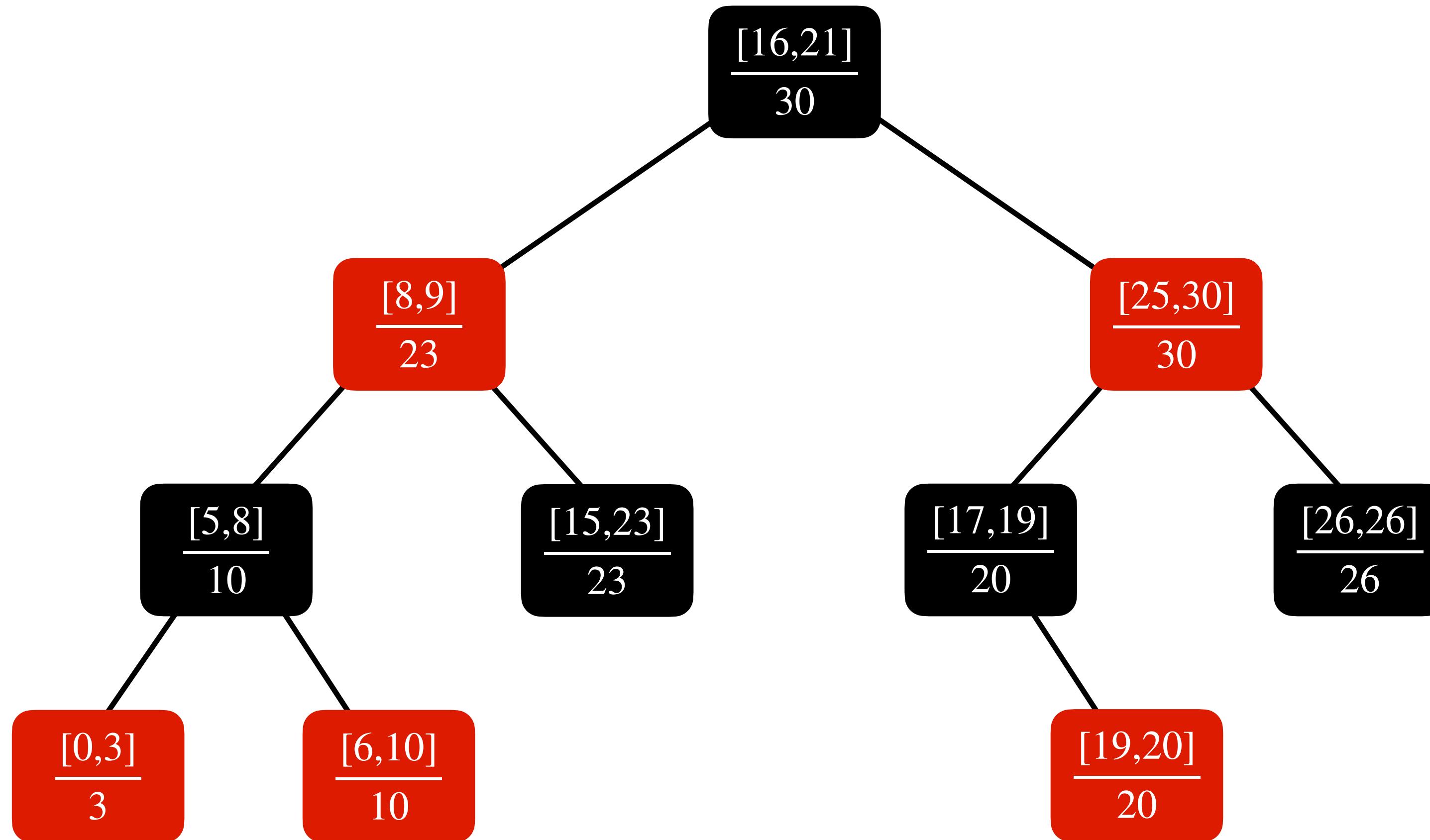
Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x contains an interval $x.int$. Interval tree supports the following operations:

- Interval-Insert(T, x)
- Interval-Delete(T, x)
- Interval-Search(T, i)



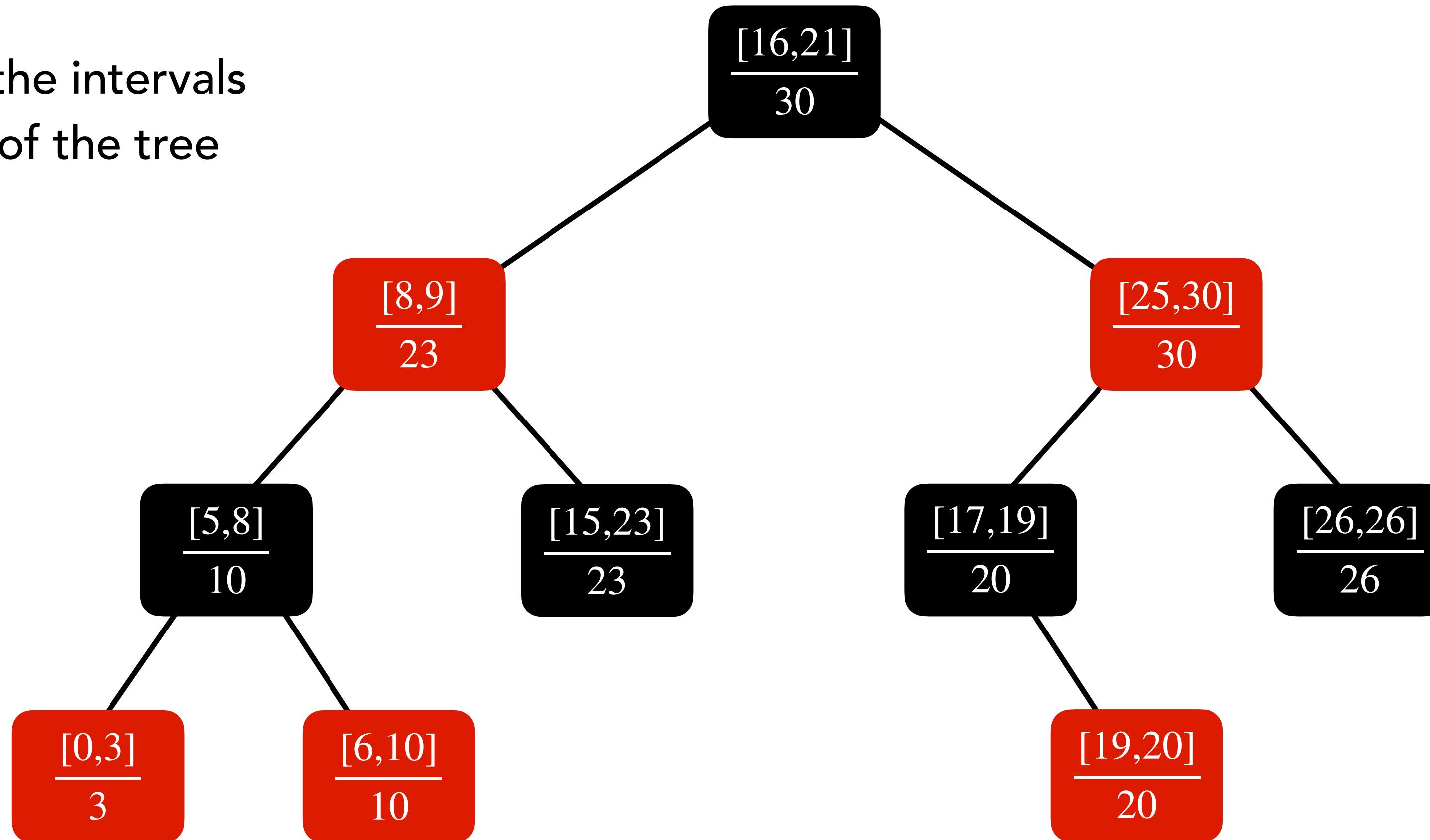
Returns an element x of T such that $x.int$ overlaps with i .

Example of an Interval Tree



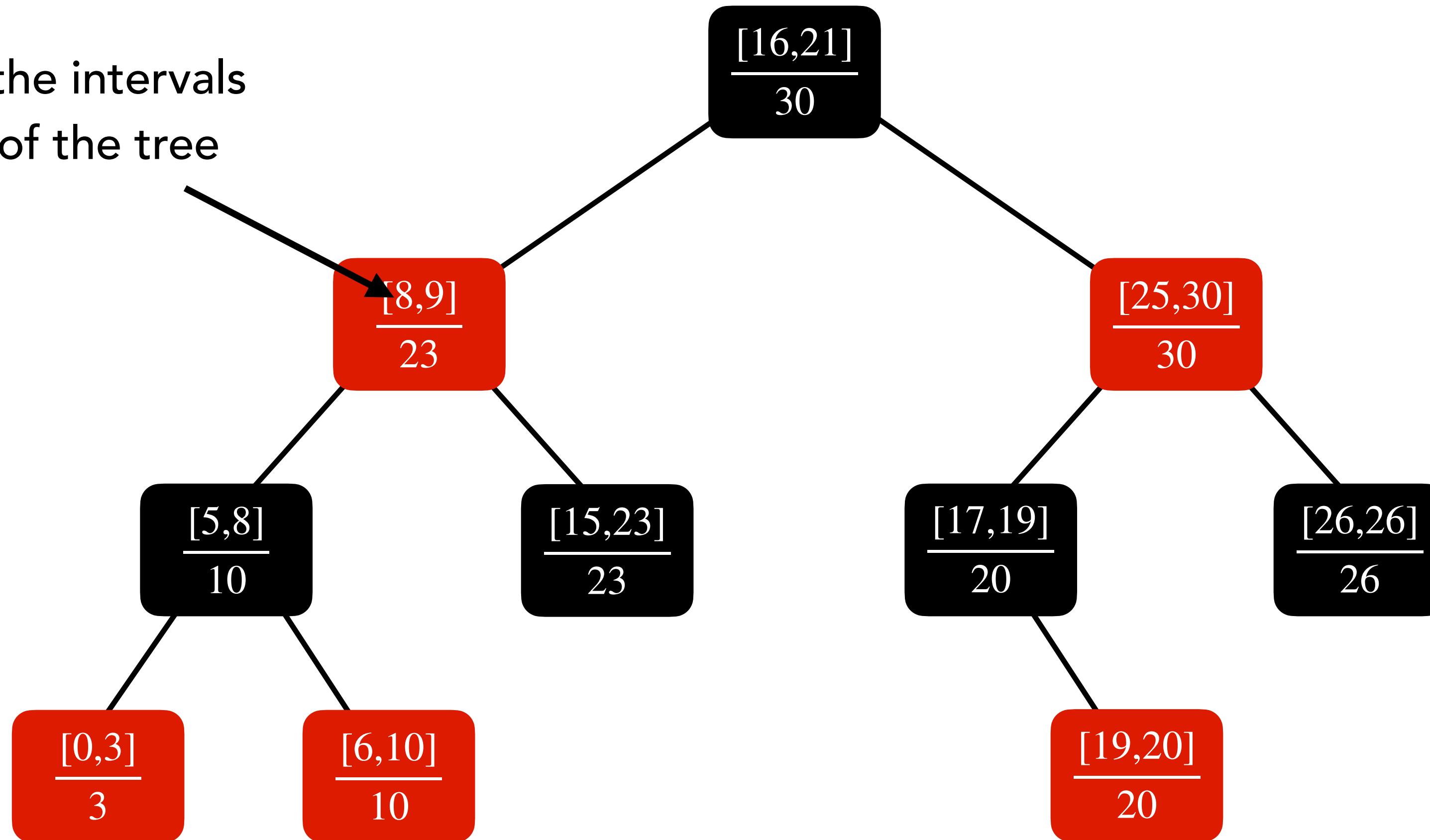
Example of an Interval Tree

low values of the intervals
are the keys of the tree



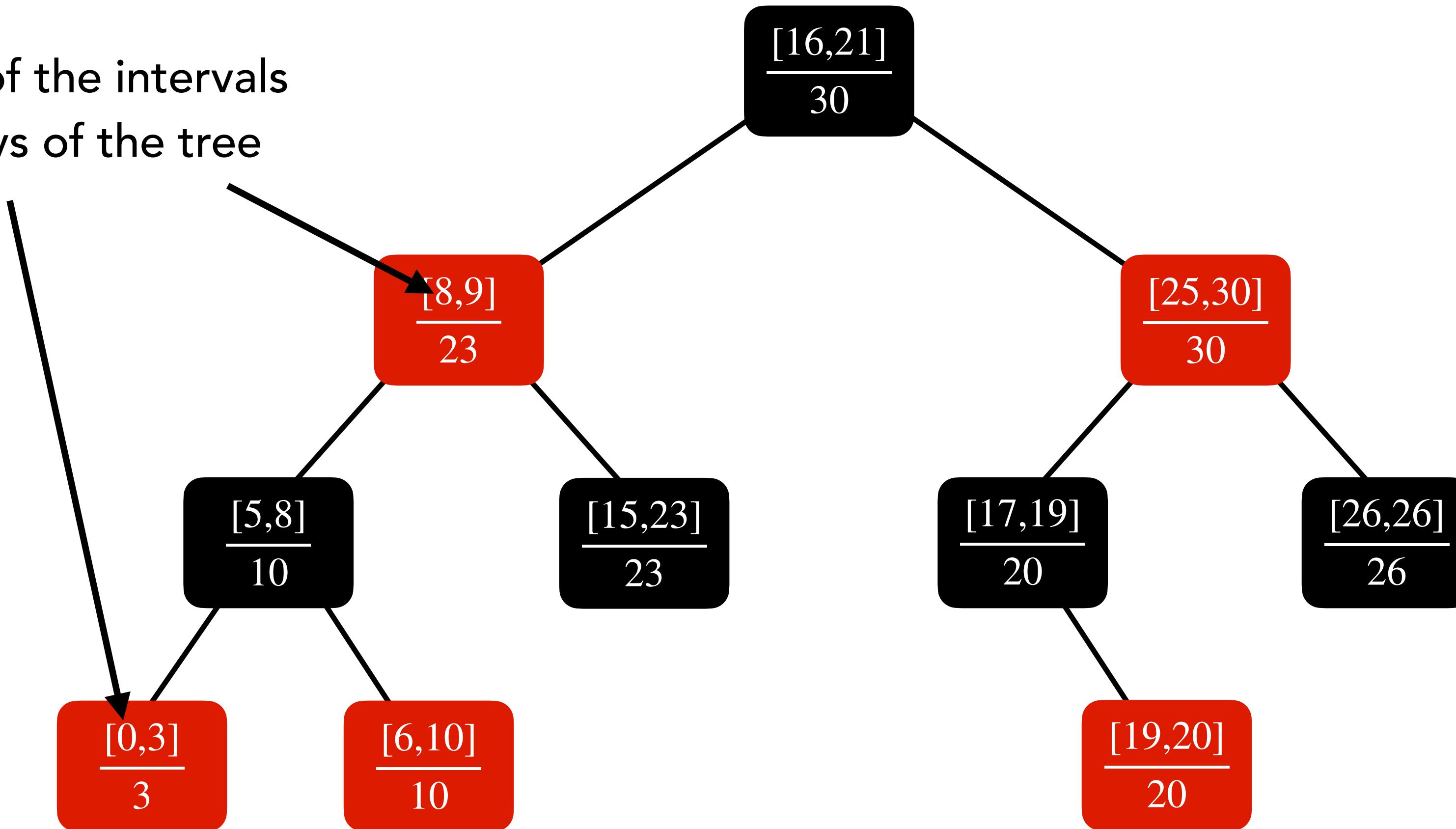
Example of an Interval Tree

low values of the intervals
are the keys of the tree



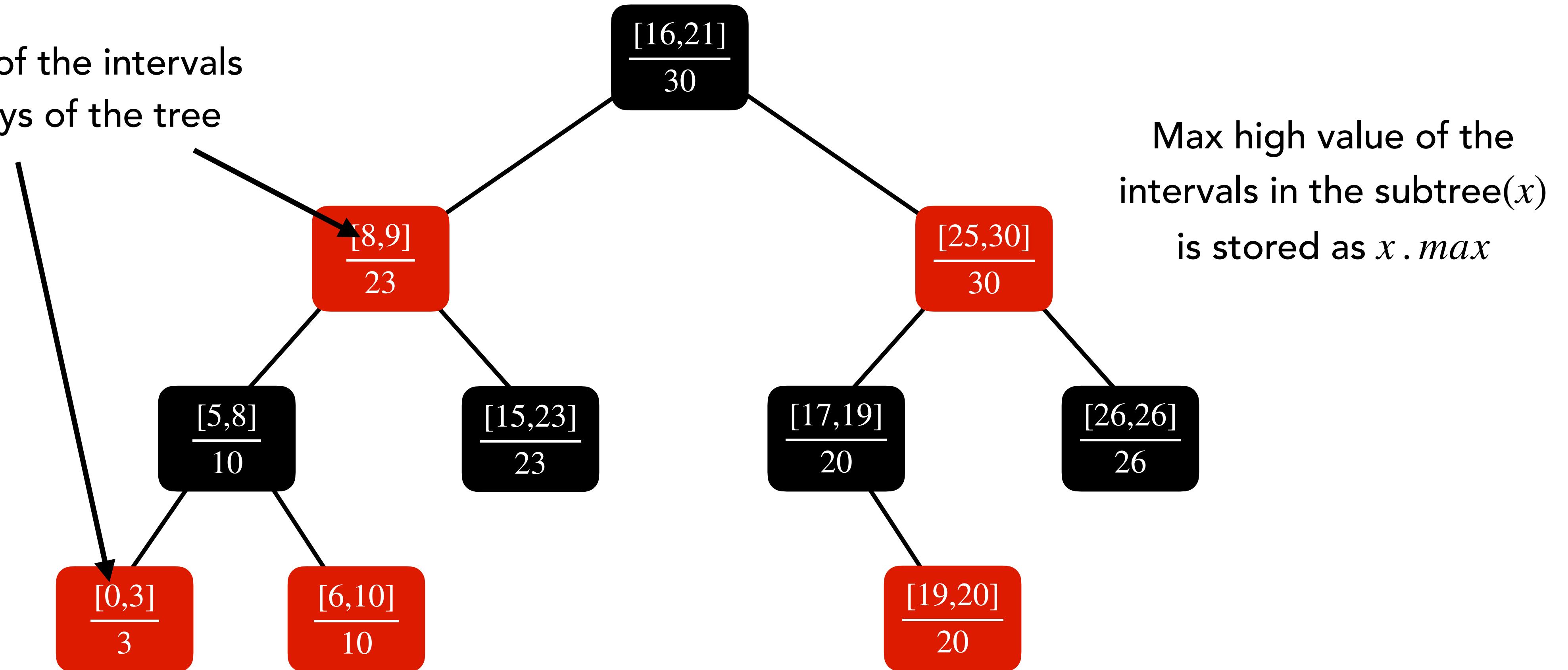
Example of an Interval Tree

low values of the intervals
are the keys of the tree



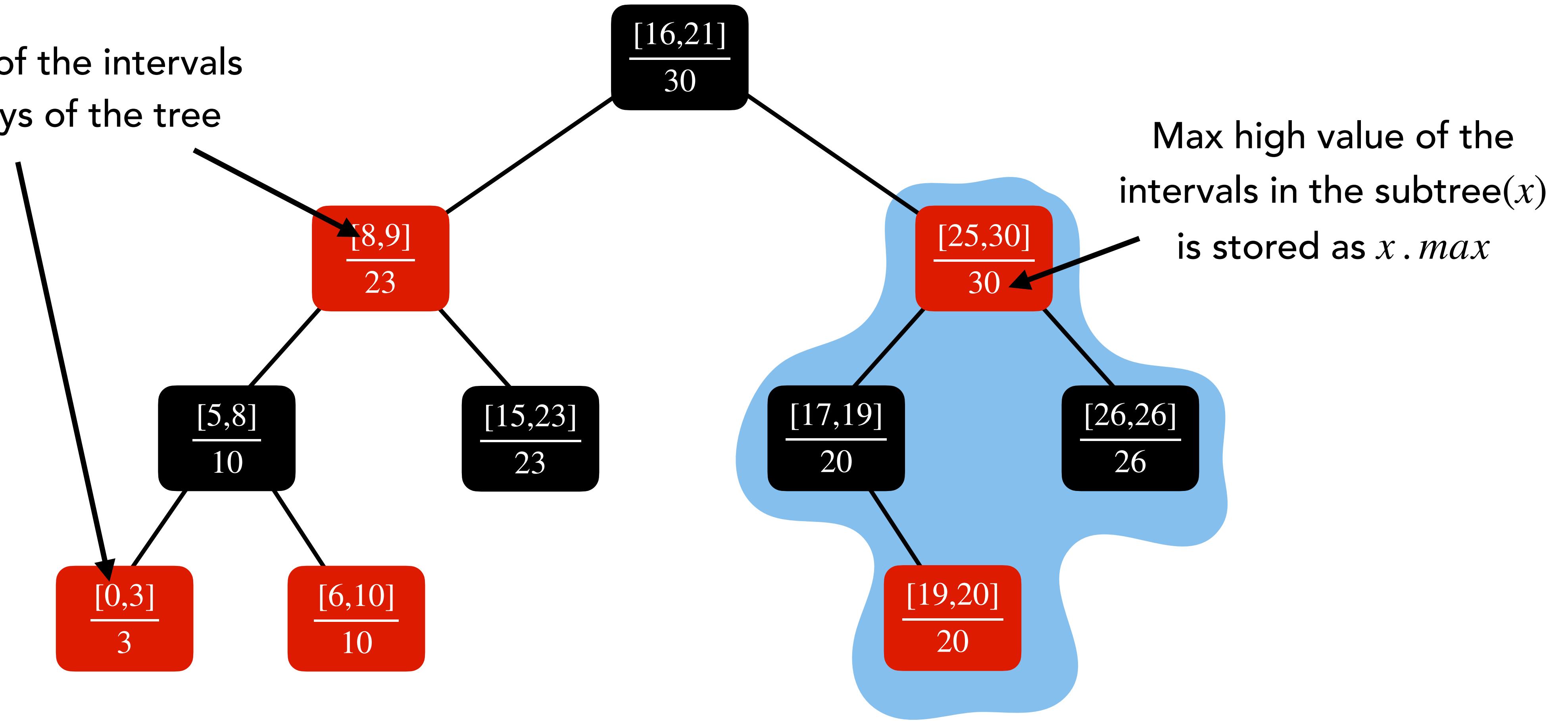
Example of an Interval Tree

low values of the intervals
are the keys of the tree



Example of an Interval Tree

low values of the intervals
are the keys of the tree



Interval Tree Definition

Interval Tree Definition

Defn: An interval tree is an **RB-tree**, where every node x contains an interval $x.int$, such that

Interval Tree Definition

Defn: An interval tree is an **RB-tree**, where every node x contains an interval $x.int$, such that

- The key of x is $x.int.low$.

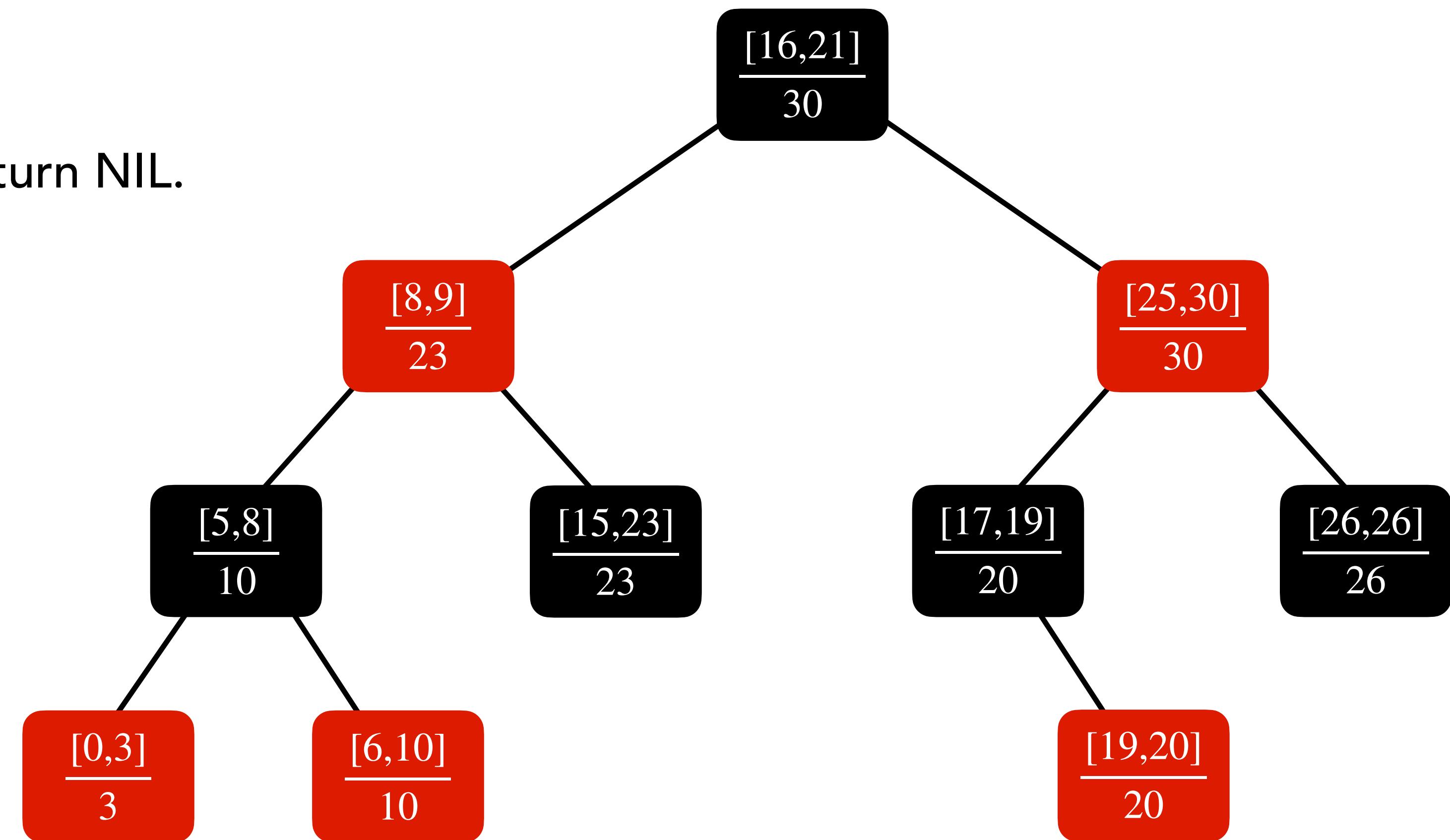
Interval Tree Definition

Defn: An interval tree is an **RB-tree**, where every node x contains an interval $x.int$, such that

- The key of x is $x.int.low$.
- Maximum of all the high values of the intervals in the $\text{subtree}(x)$ is stored as $x.max$.

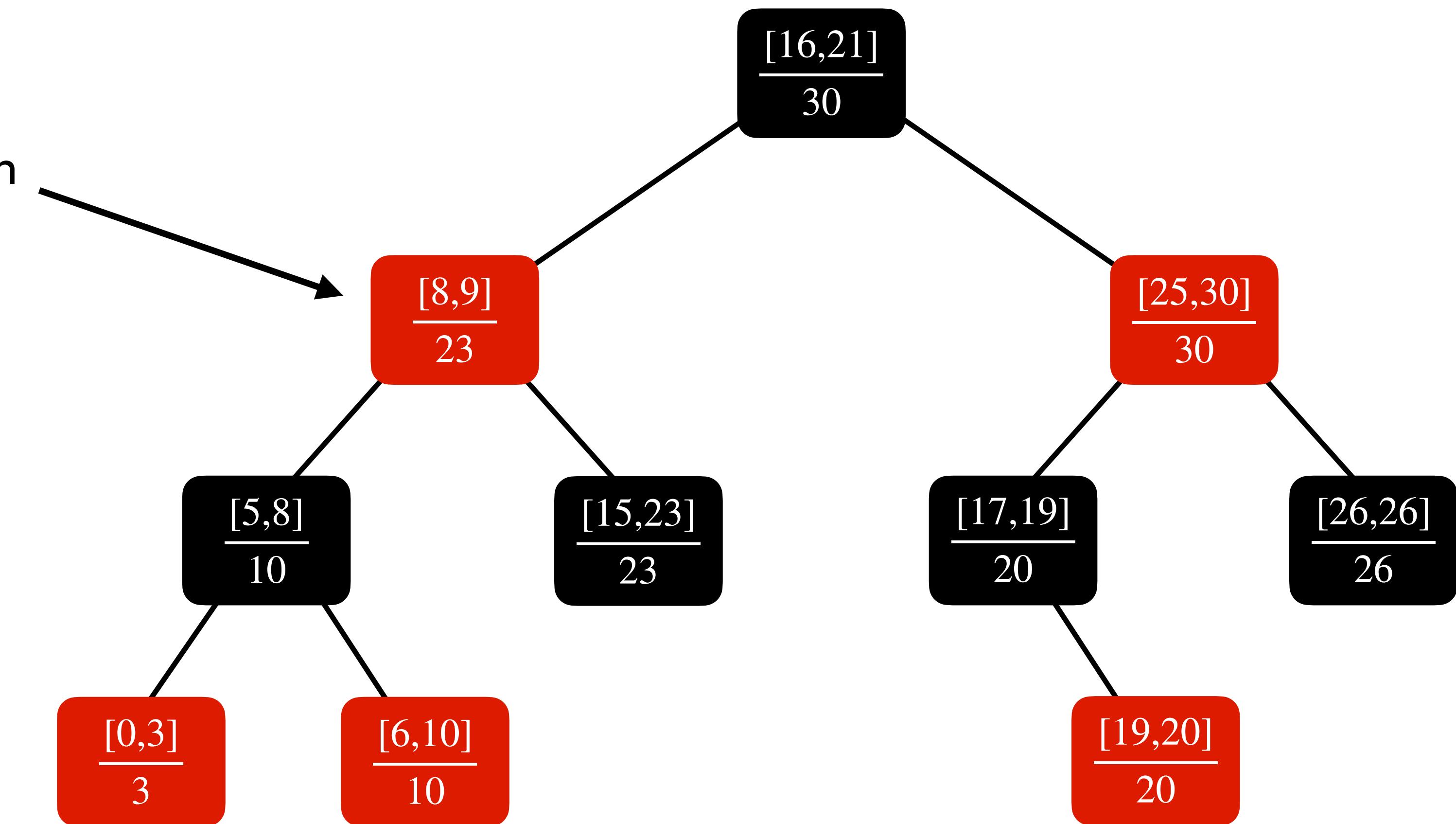
Idea Behind Interval-Search

Interval-Search($T, [11,14]$) should return NIL.



Idea Behind Interval-Search

Interval-Search($T, [6,10]$) can return



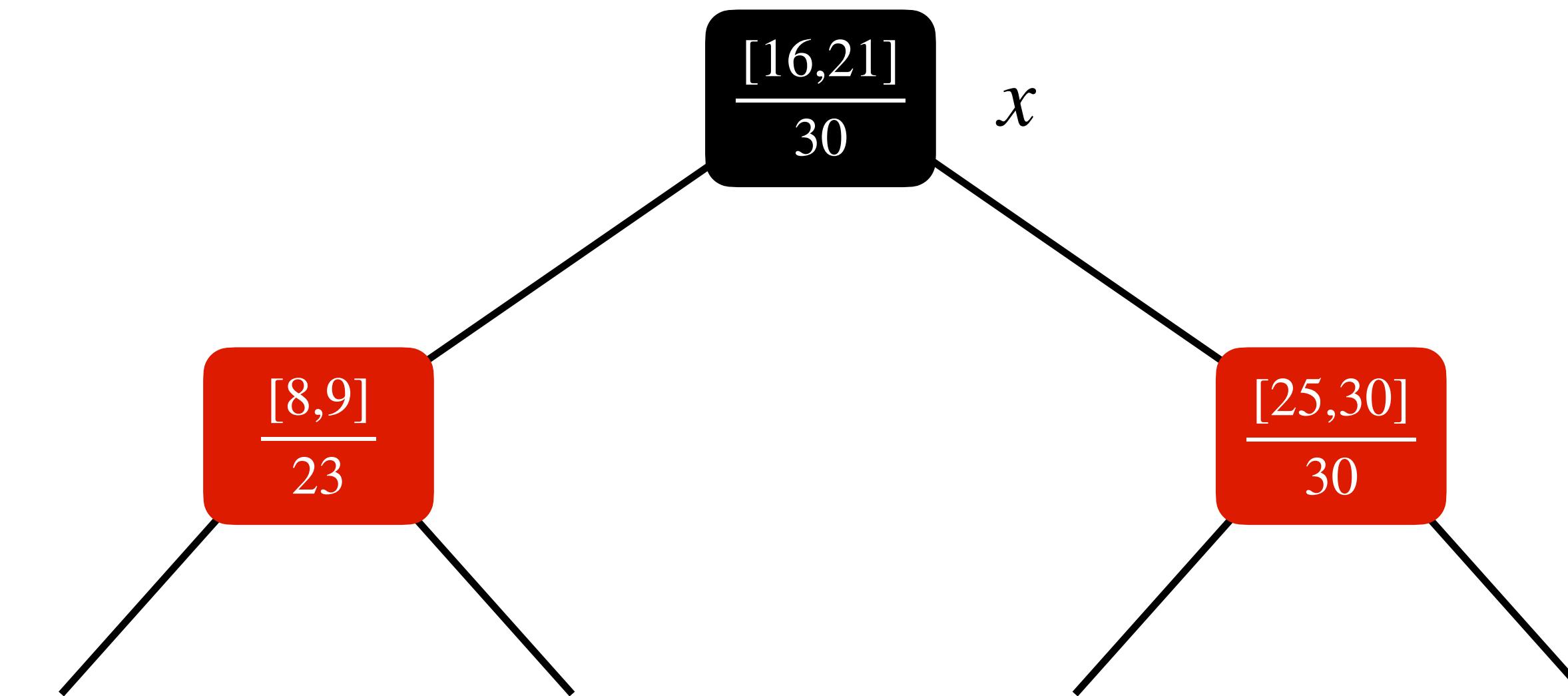
Idea Behind Interval-Search

Idea Behind Interval-Search

Find the node with interval overlapping with $i = [25,40]$.

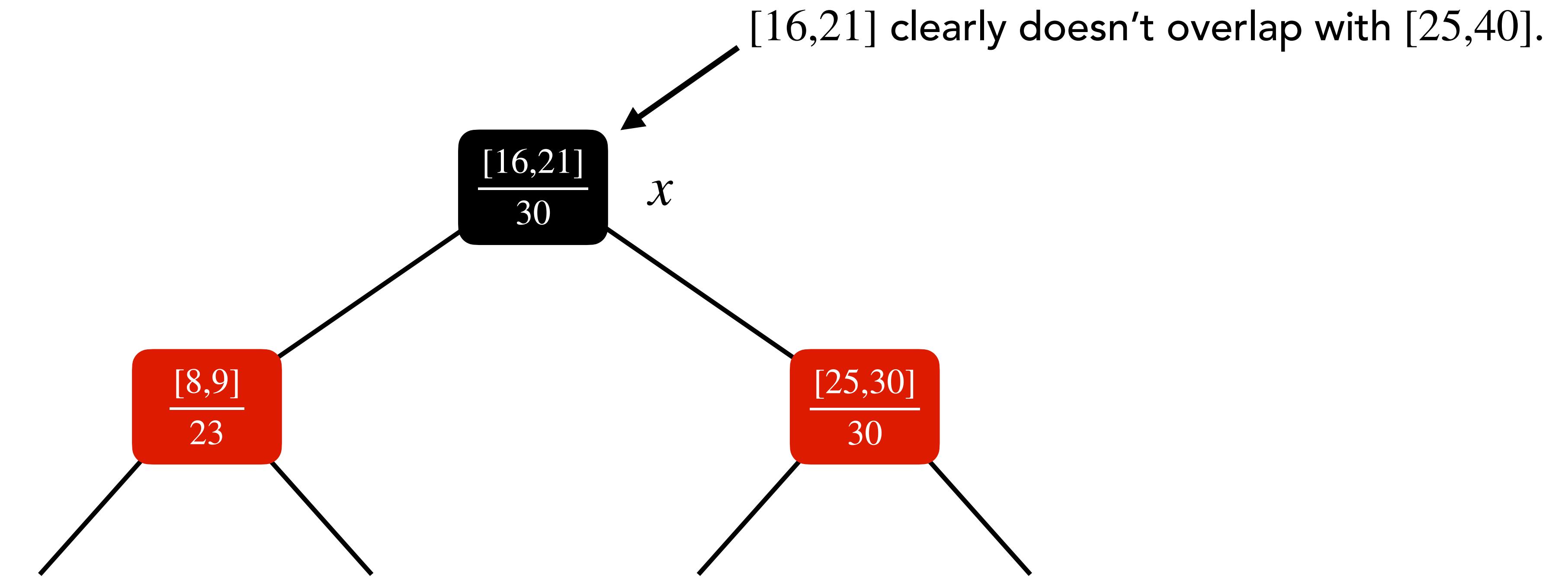
Idea Behind Interval-Search

Find the node with interval overlapping with $i = [25,40]$.



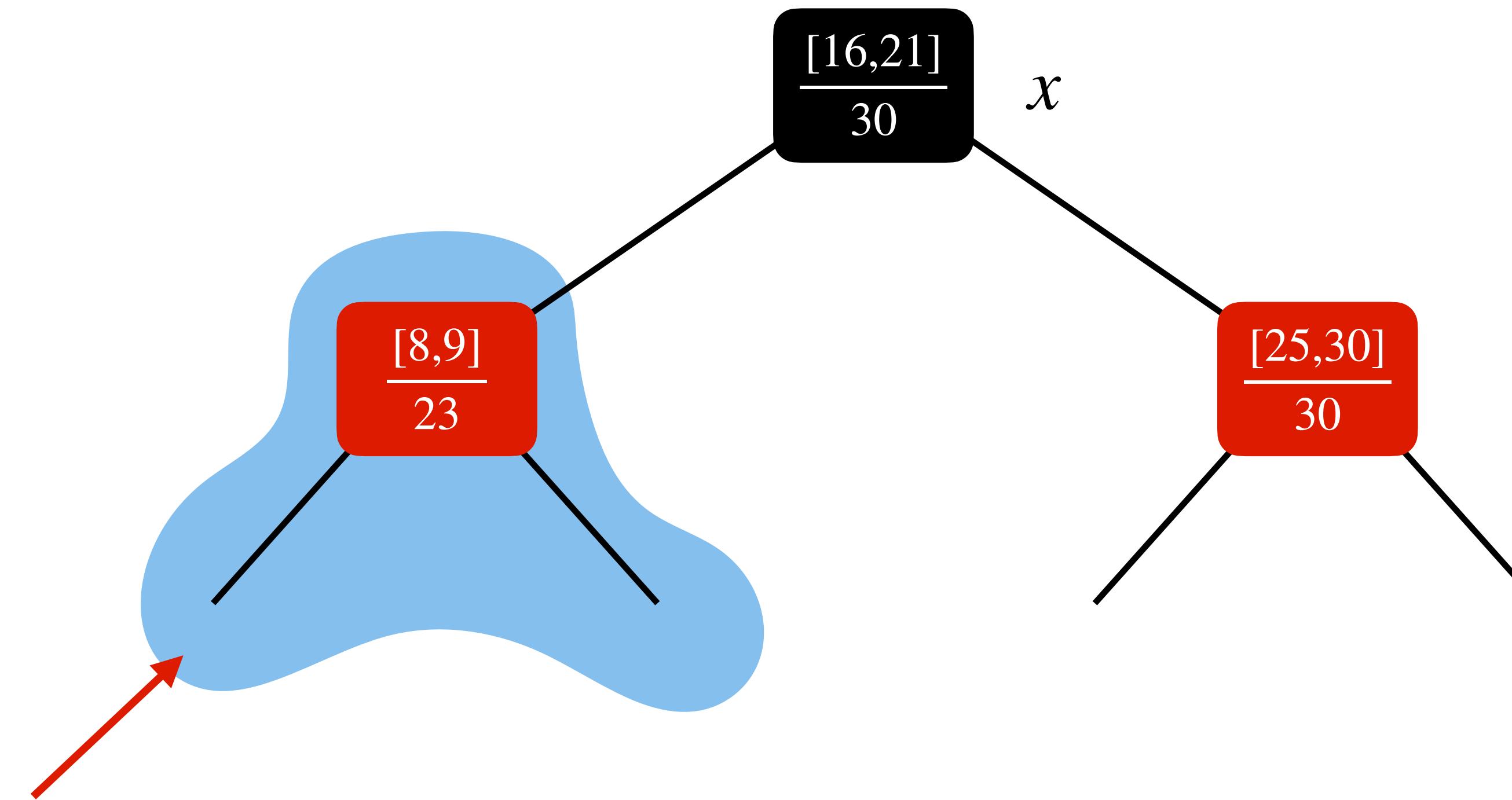
Idea Behind Interval-Search

Find the node with interval overlapping with $i = [25,40]$.



Idea Behind Interval-Search

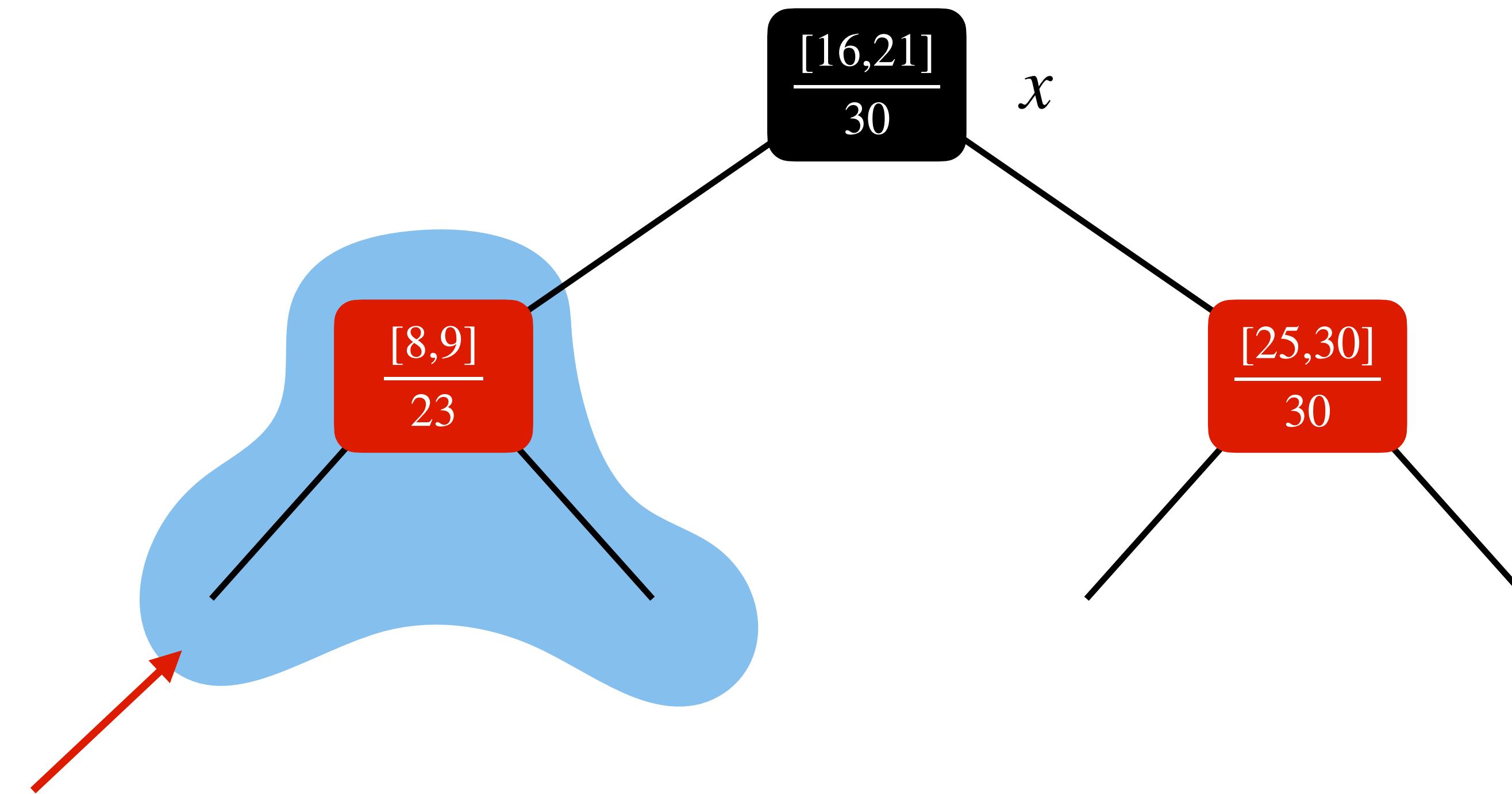
Find the node with interval overlapping with $i = [25,40]$.



Can $[25,40]$ overlap with an interval in the left subtree?

Idea Behind Interval-Search

Find the node with interval overlapping with $i = [25,40]$.

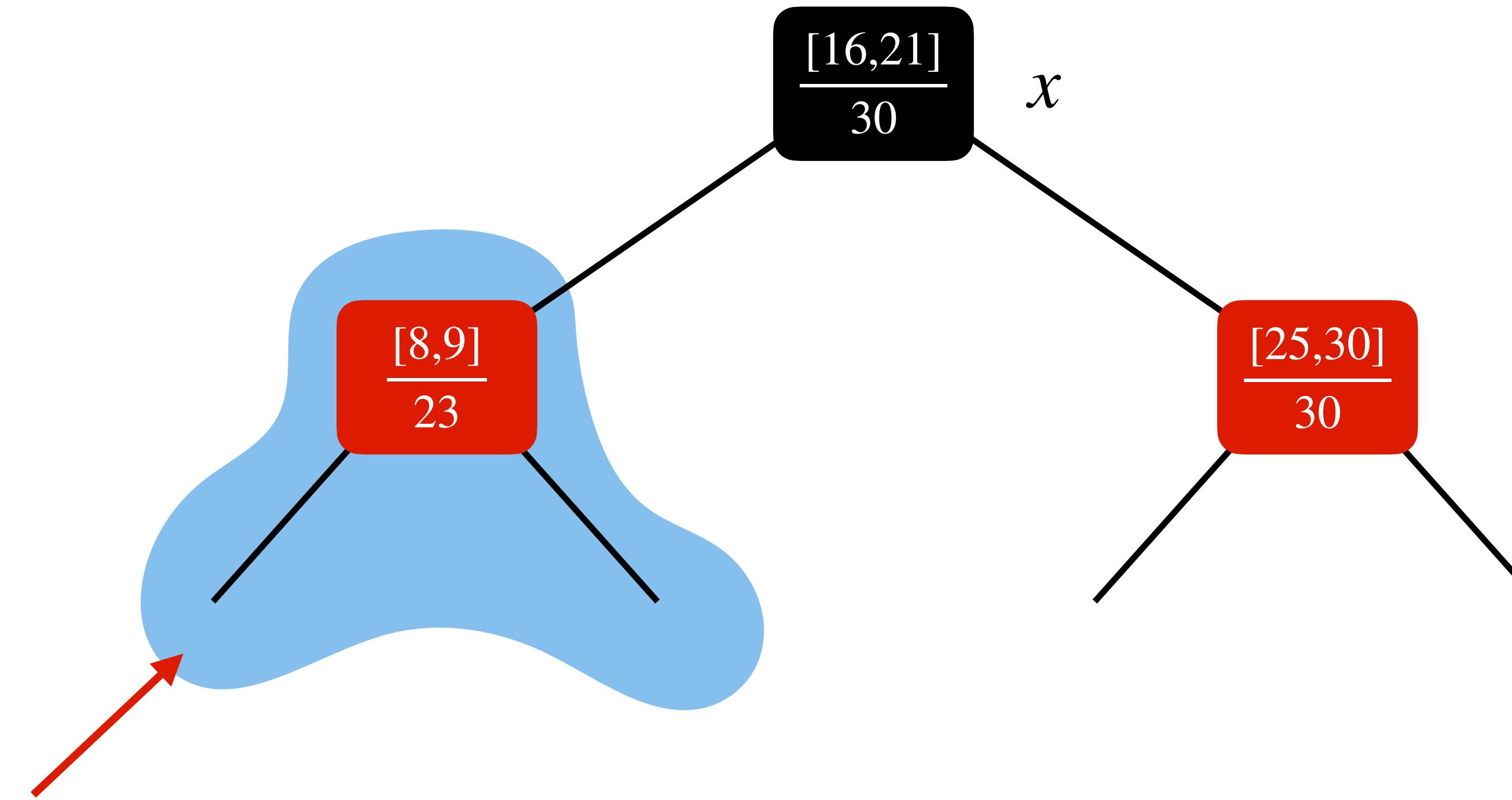


Can $[25,40]$ overlap with an interval in the left subtree?

No, because maximum high is 23.

Idea Behind Interval-Search

Find the node with interval overlapping with $i = [25,40]$.

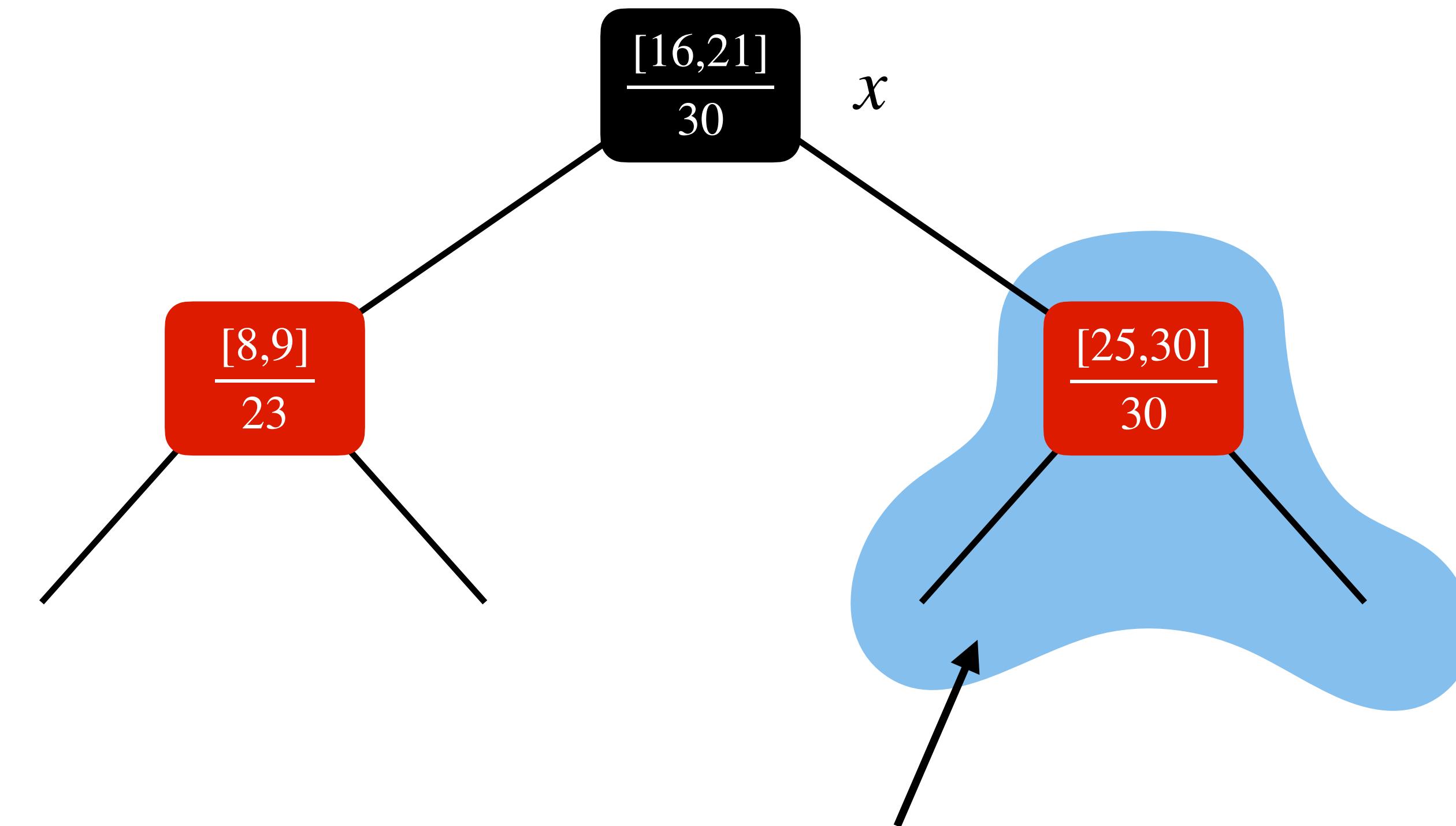


Can $[25,40]$ overlap with an interval in the left subtree?

No, because maximum high is 23. Hence, every interval in this subtree will be to the left of $[25,40]$.

Idea Behind Interval-Search

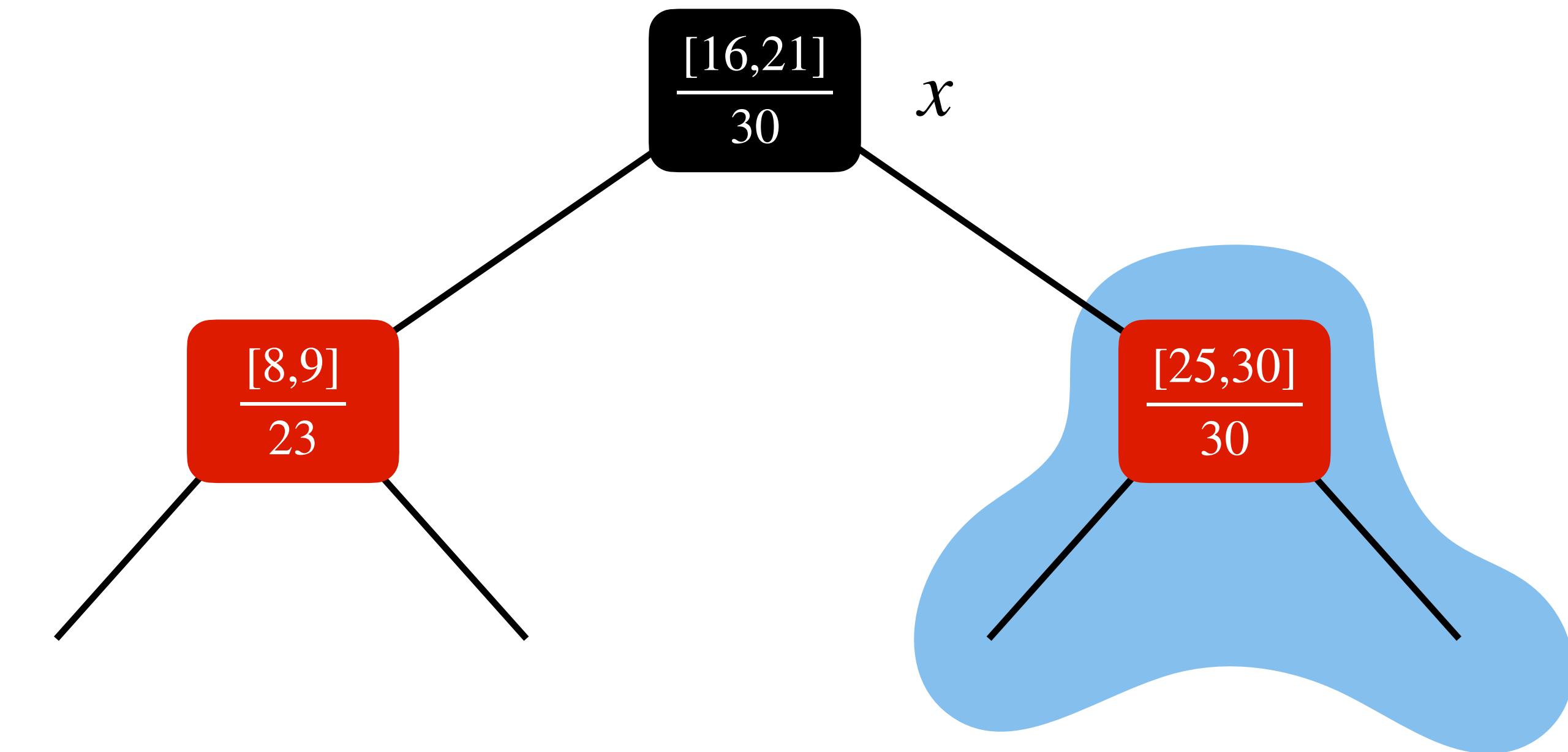
Find the node with interval overlapping with $i = [25,40]$.



Any interval overlapping with $[25,40]$, if present must be in the right subtree.

Idea Behind Interval-Search

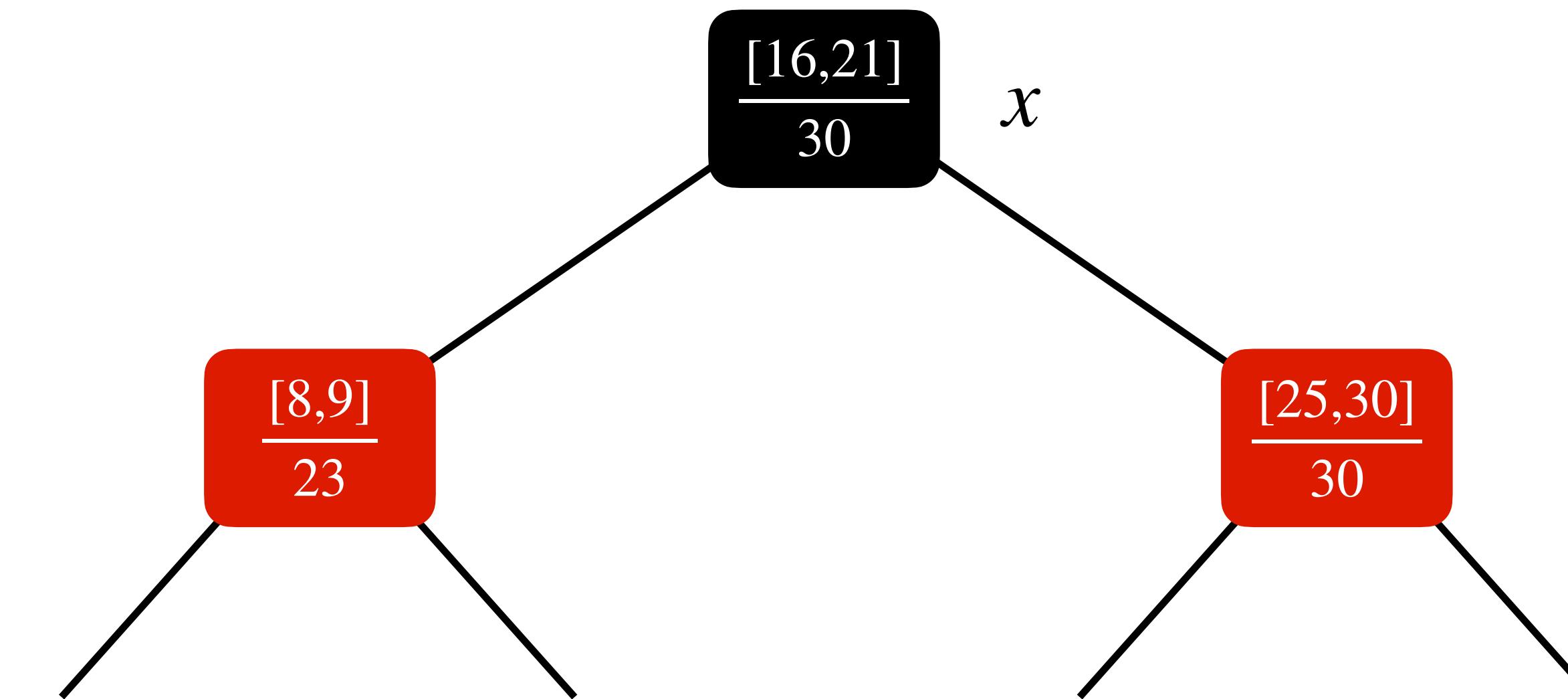
Find the node with interval overlapping with $i = [25,40]$.



When $i.\text{low} > x.\text{left}.\text{max}$, go right

Idea Behind Interval-Search

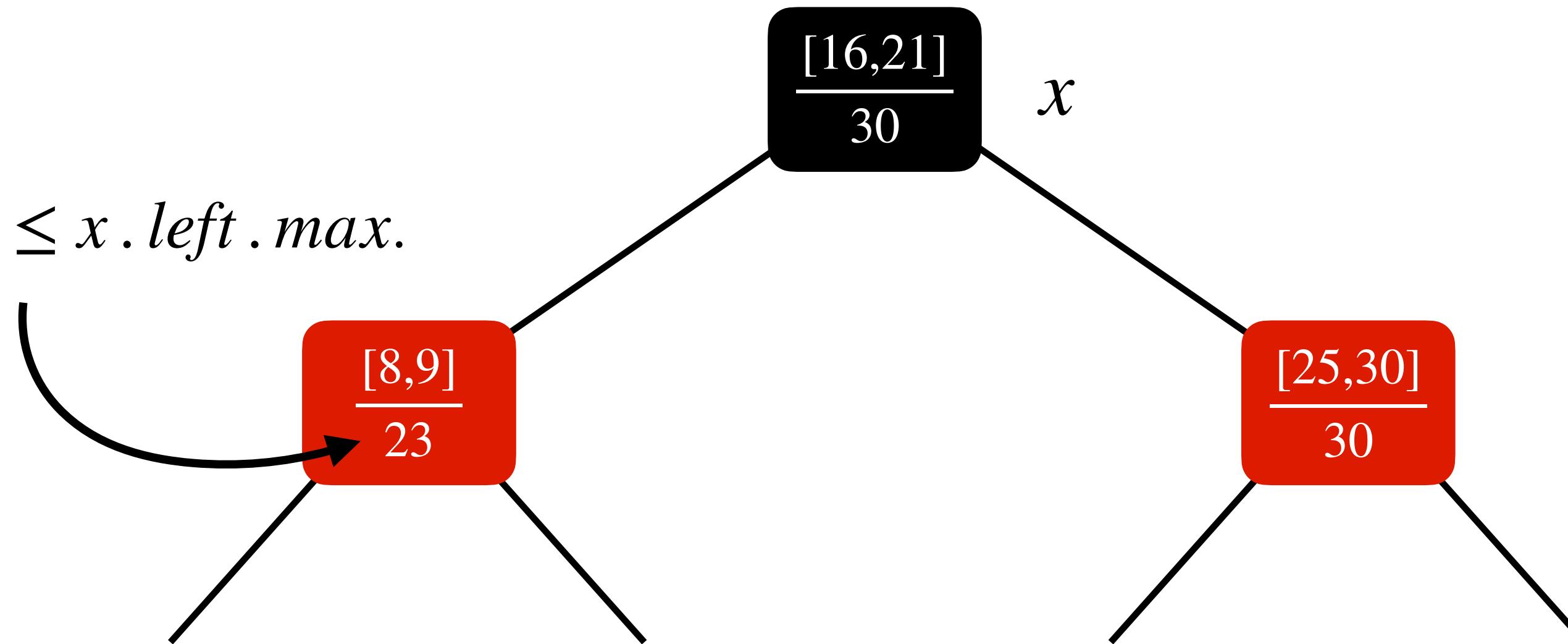
Find the node with interval overlapping with $i = [10,14]$.



Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

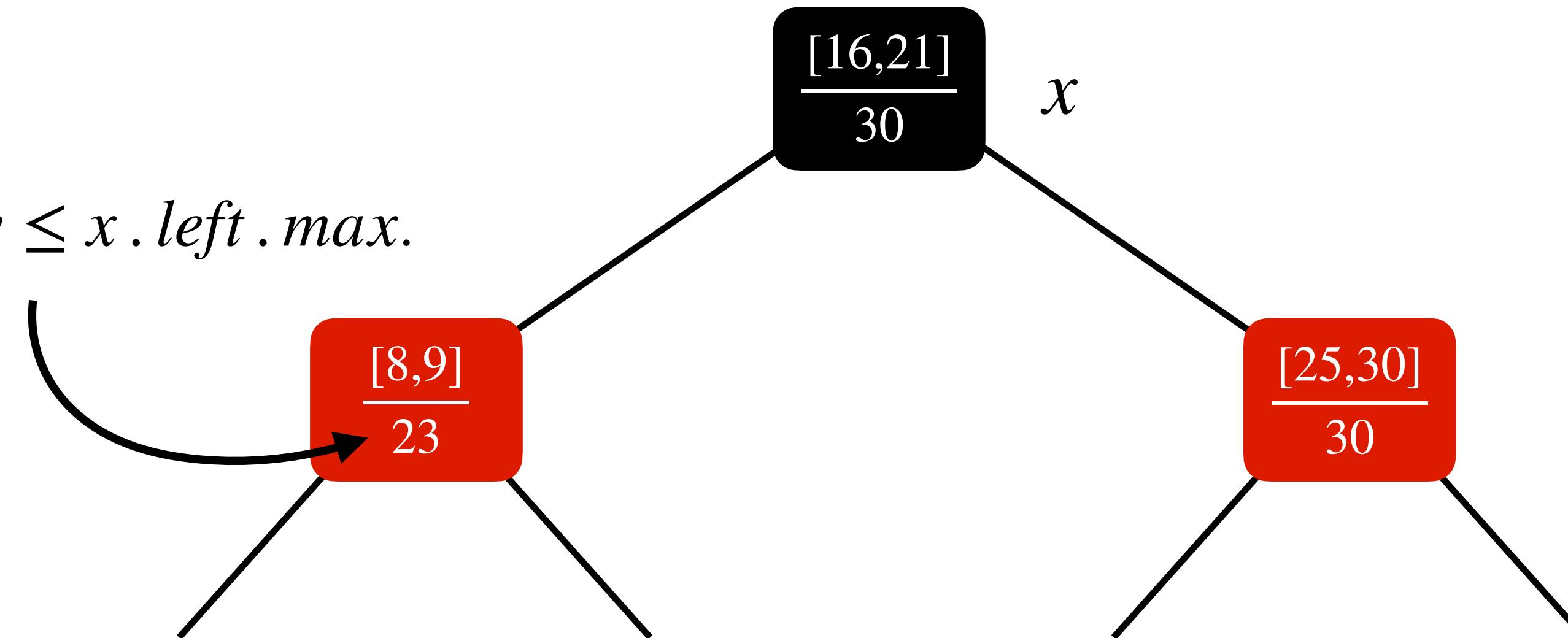
Notice that $i.low \leq x.left.max$.



Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

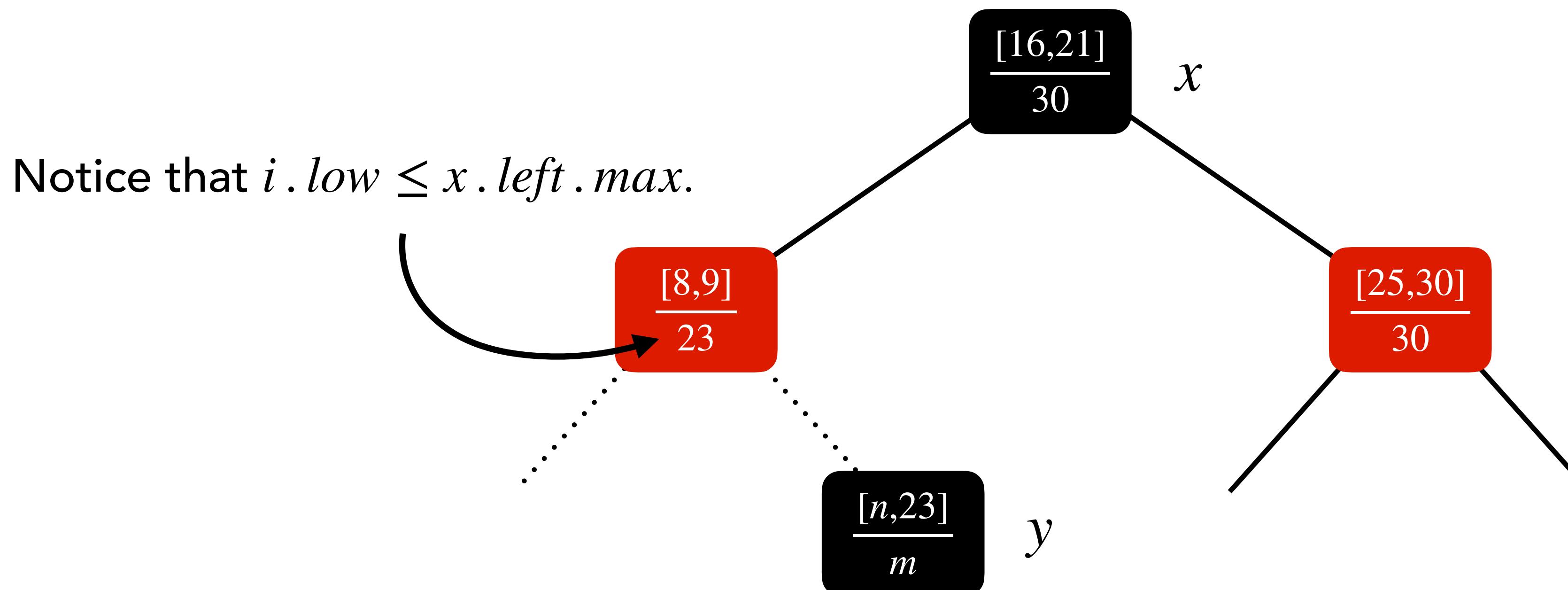
Notice that $i.low \leq x.left.max$.



We will prove now that when $i.low \leq x.left.max$, it is safe to **go left**.

Idea Behind Interval-Search

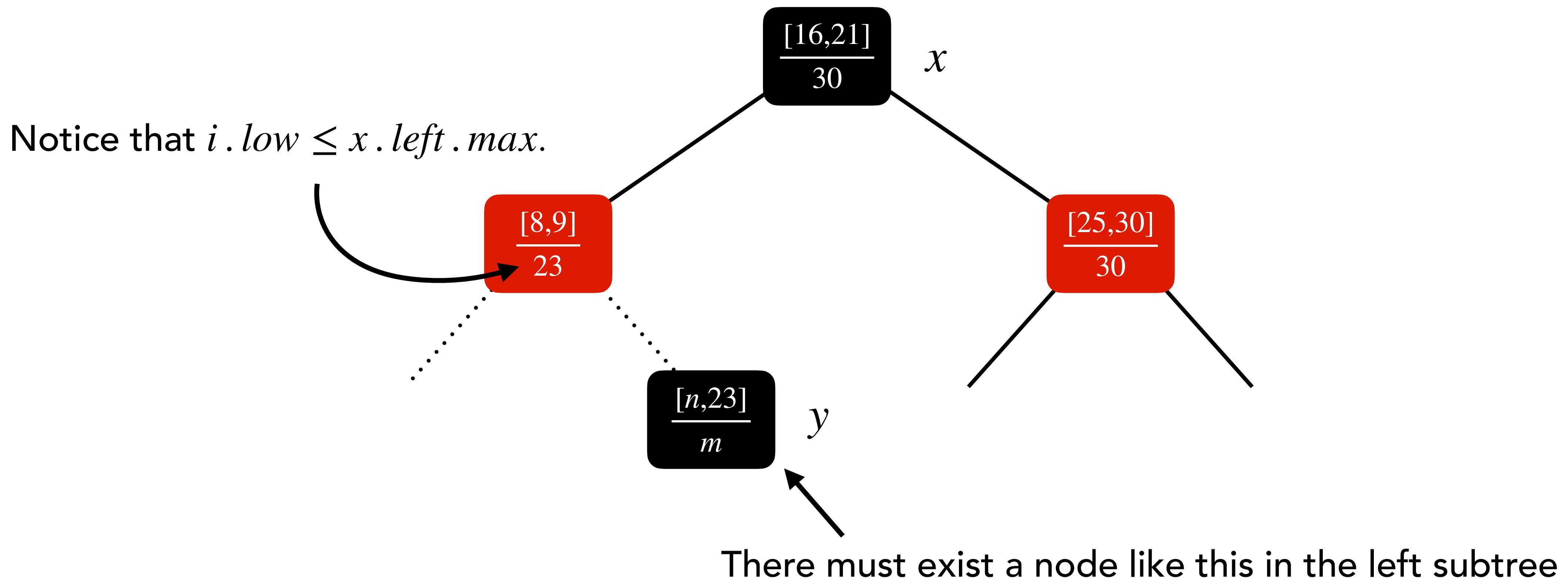
Find the node with interval overlapping with $i = [10,14]$.



There must exist a node like this in the left subtree

Idea Behind Interval-Search

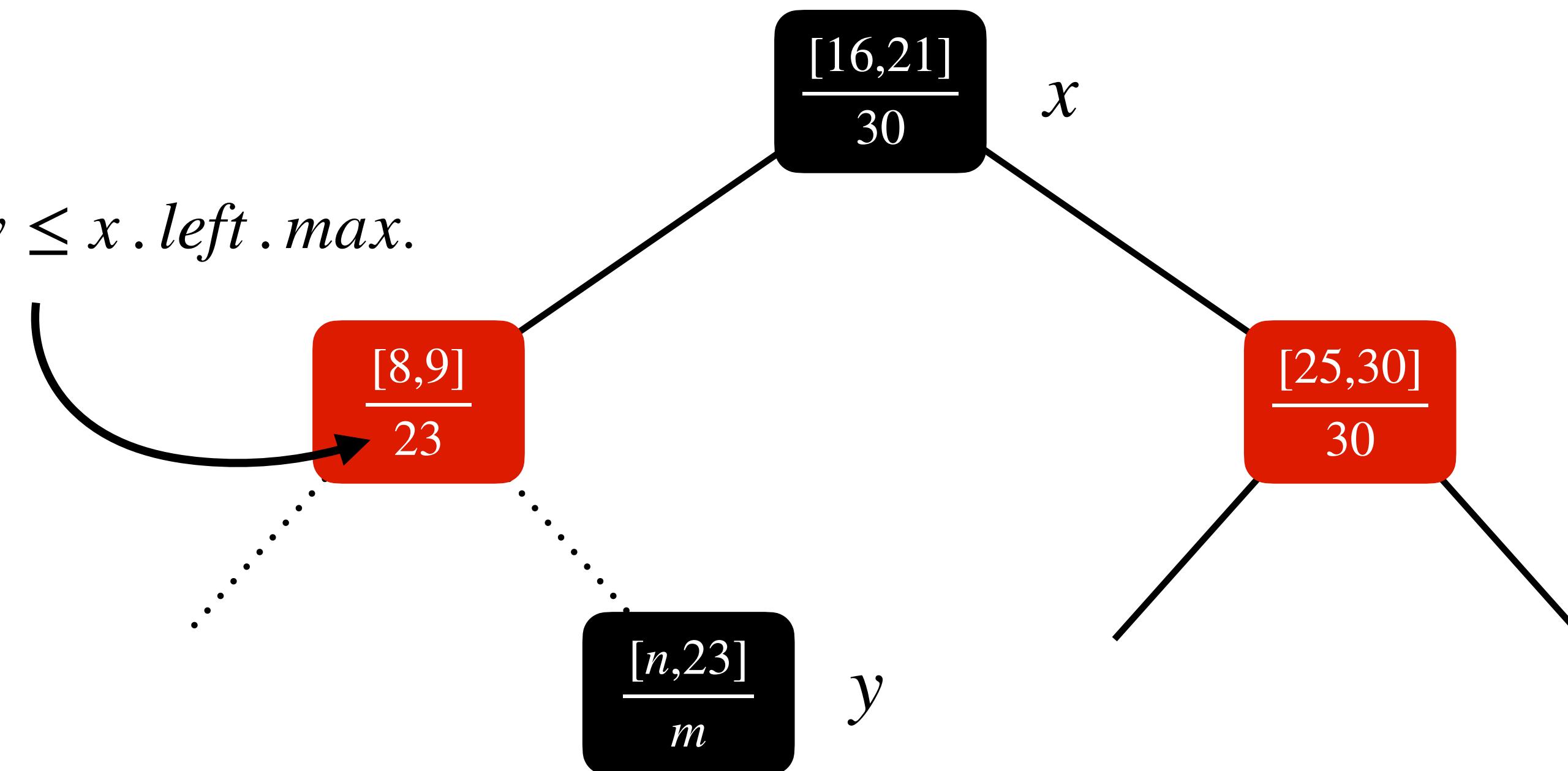
Find the node with interval overlapping with $i = [10,14]$.



Idea Behind Interval-Search

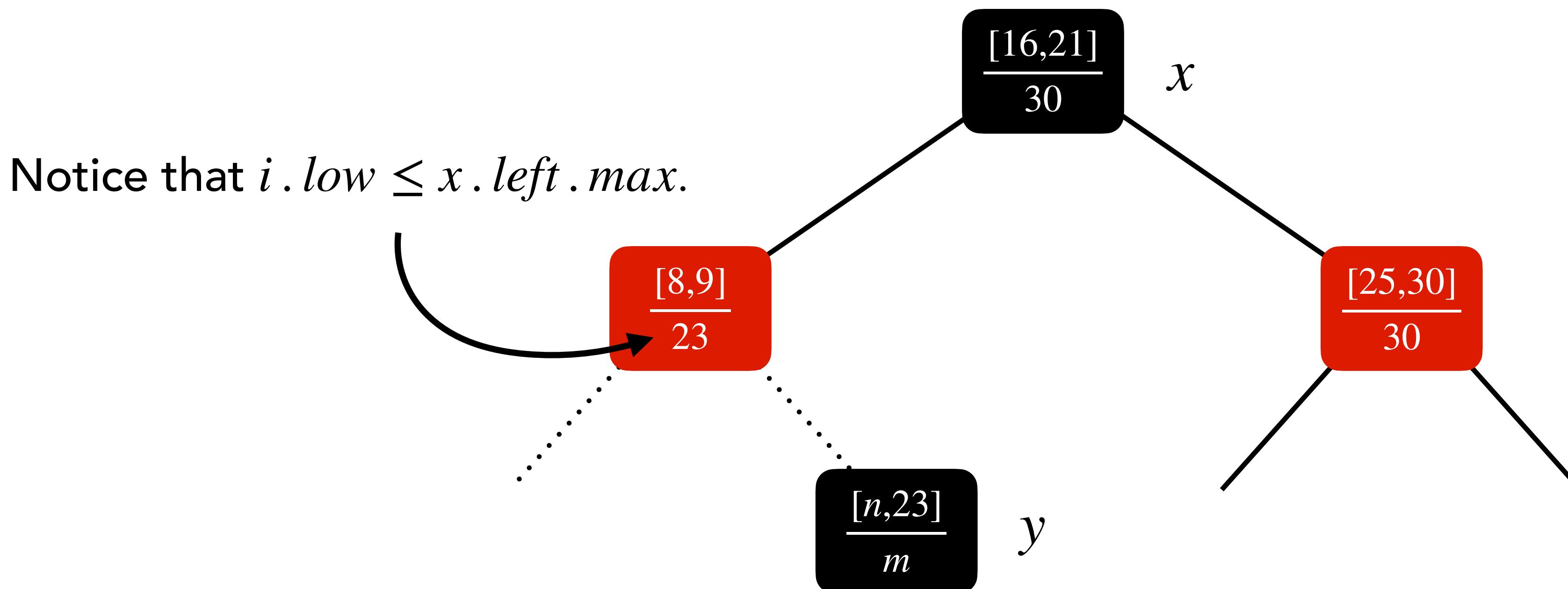
Find the node with interval overlapping with $i = [10,14]$.

Notice that $i.low \leq x.left.max$.



Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

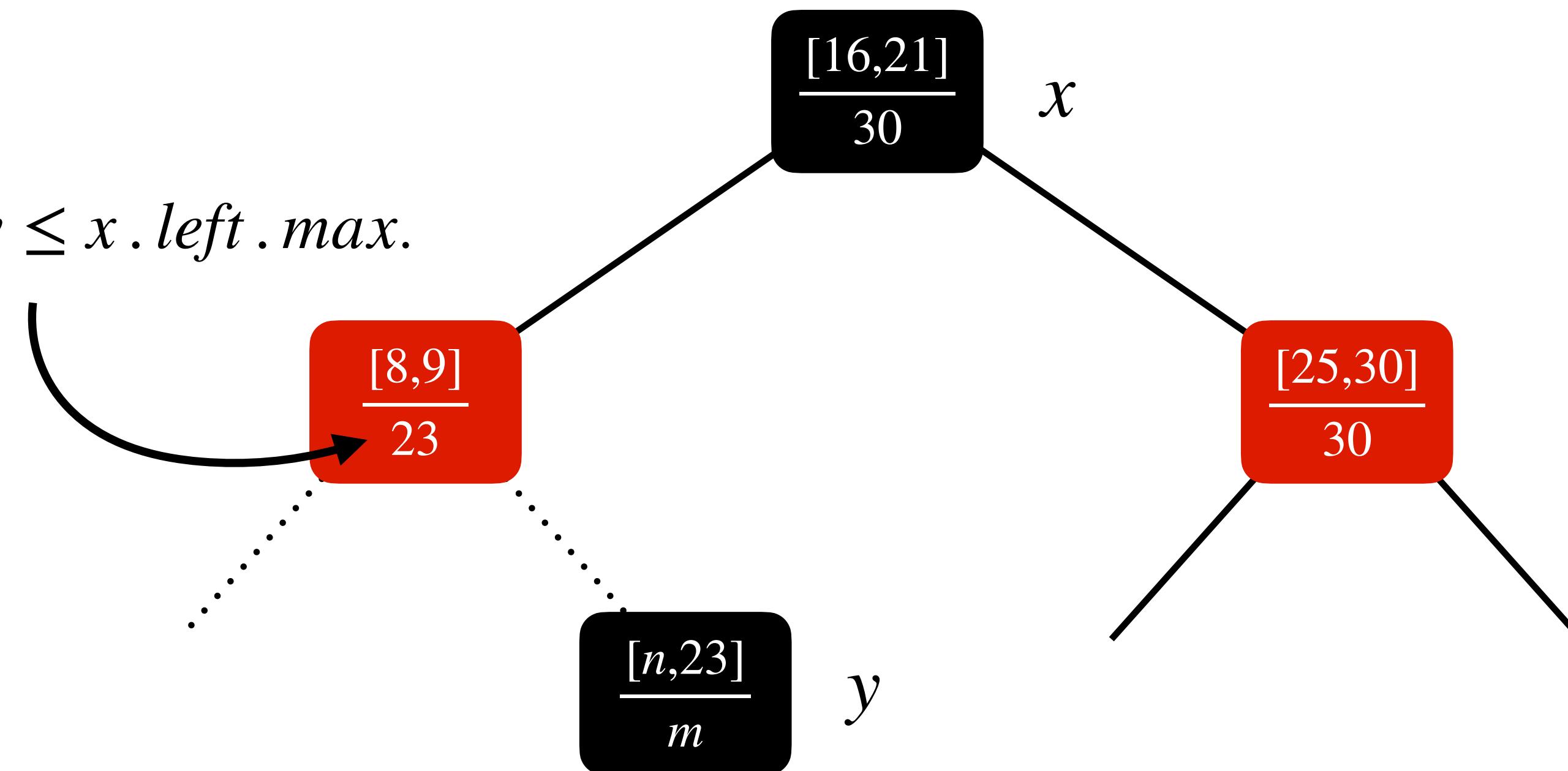


If $n \leq 14$, y in the left subtree will overlap with $[10,14]$.

Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

Notice that $i.\text{low} \leq x.\text{left}.\text{max.}$

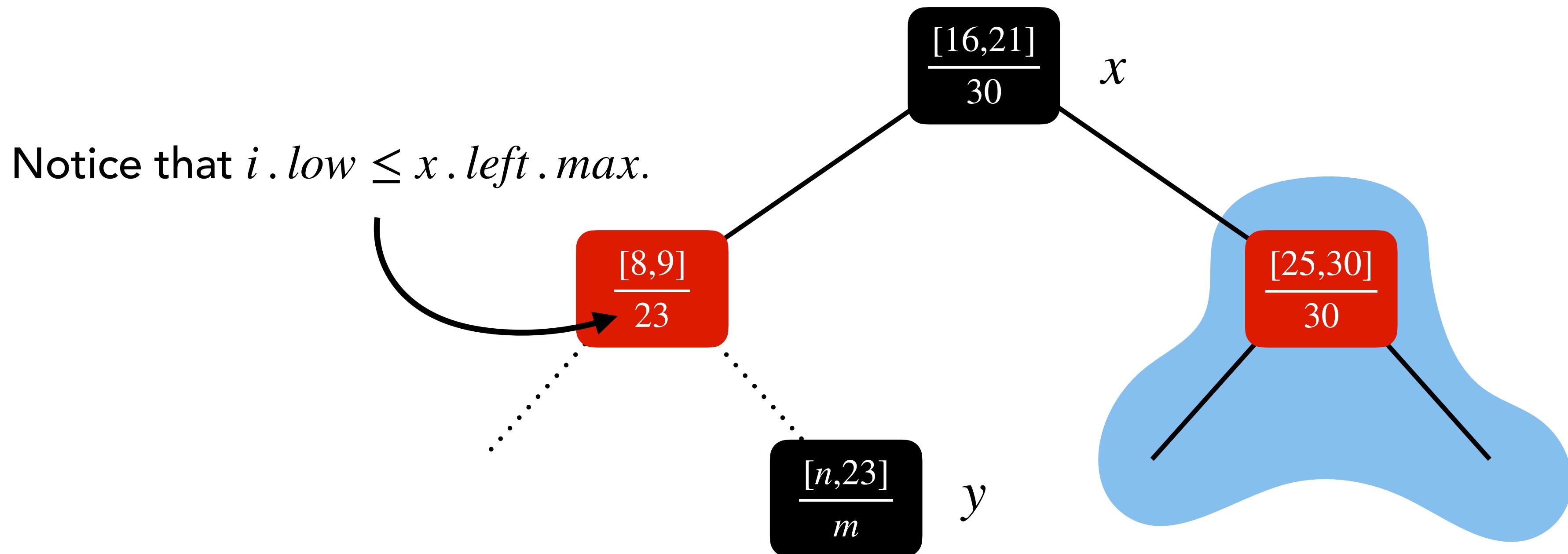


If $n \leq 14$, y in the left subtree will overlap with [10,14].

If $n > 14$, y will not overlap with [10,14].

Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

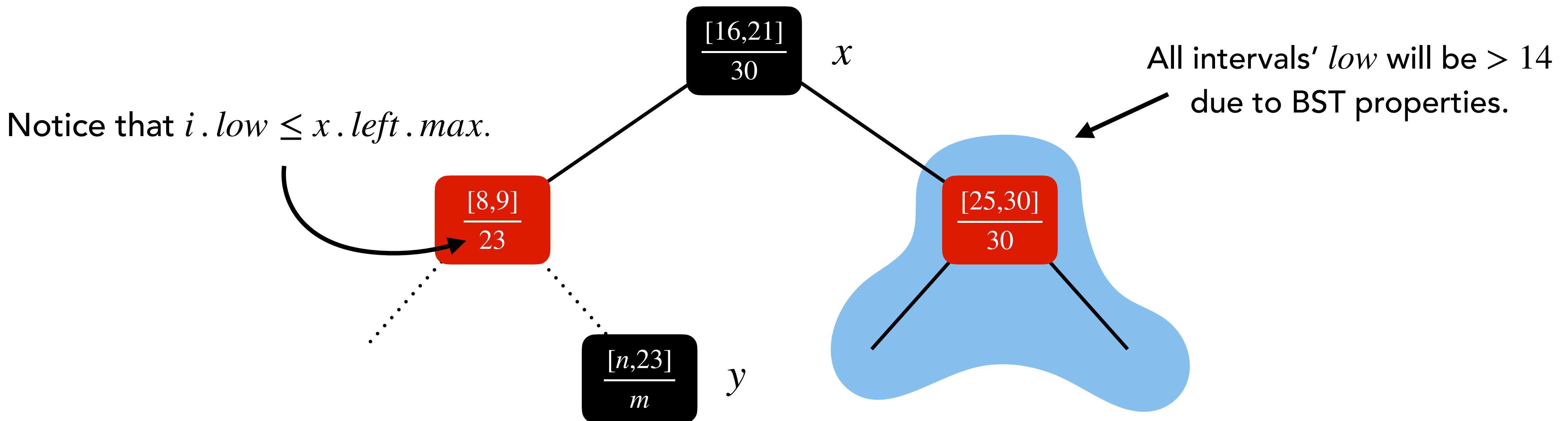


If $n \leq 14$, y in the left subtree will overlap with $[10,14]$.

If $n > 14$, y will not overlap with $[10,14]$.

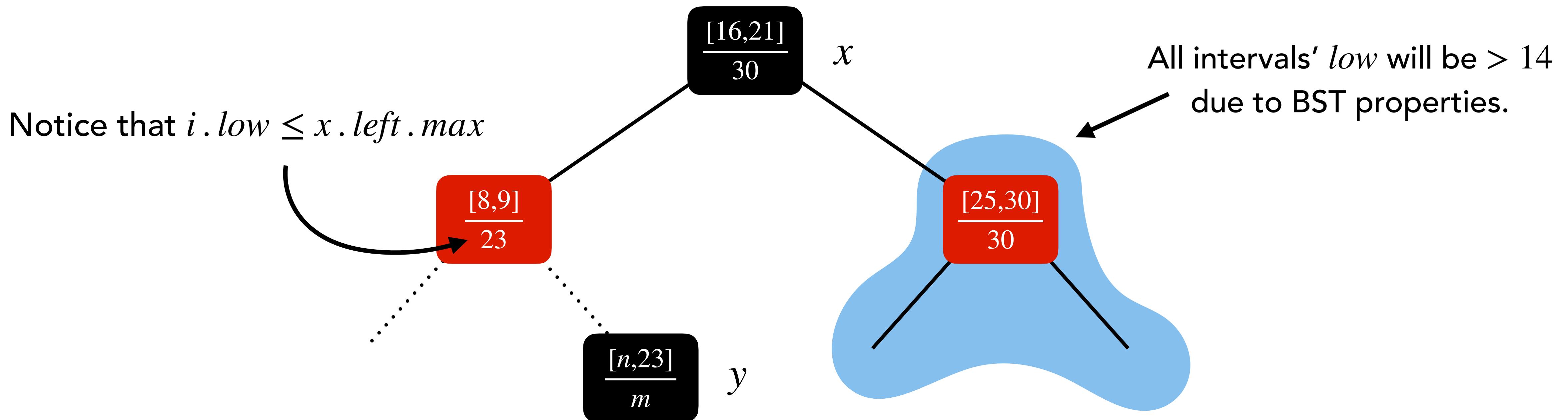
Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.



Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.

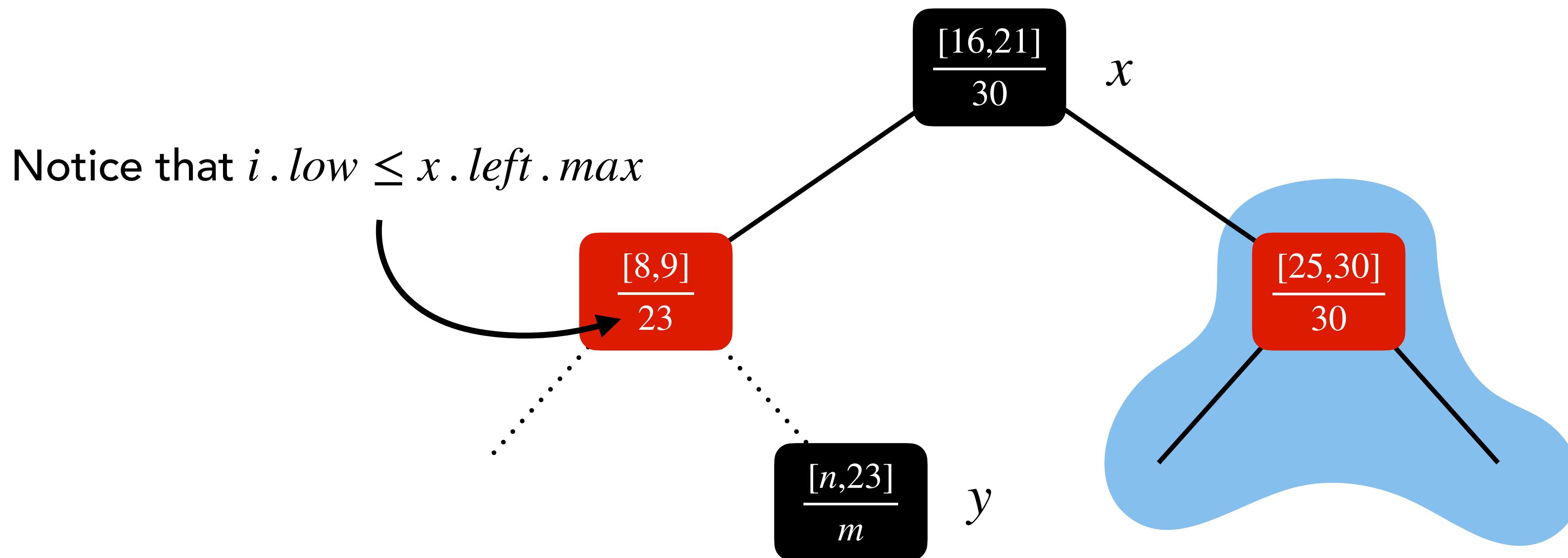


If $n \leq 14$, y in the left subtree will overlap with $[10,14]$.

If $n > 14$, no node in the right subtree will overlap with $[10,14]$.

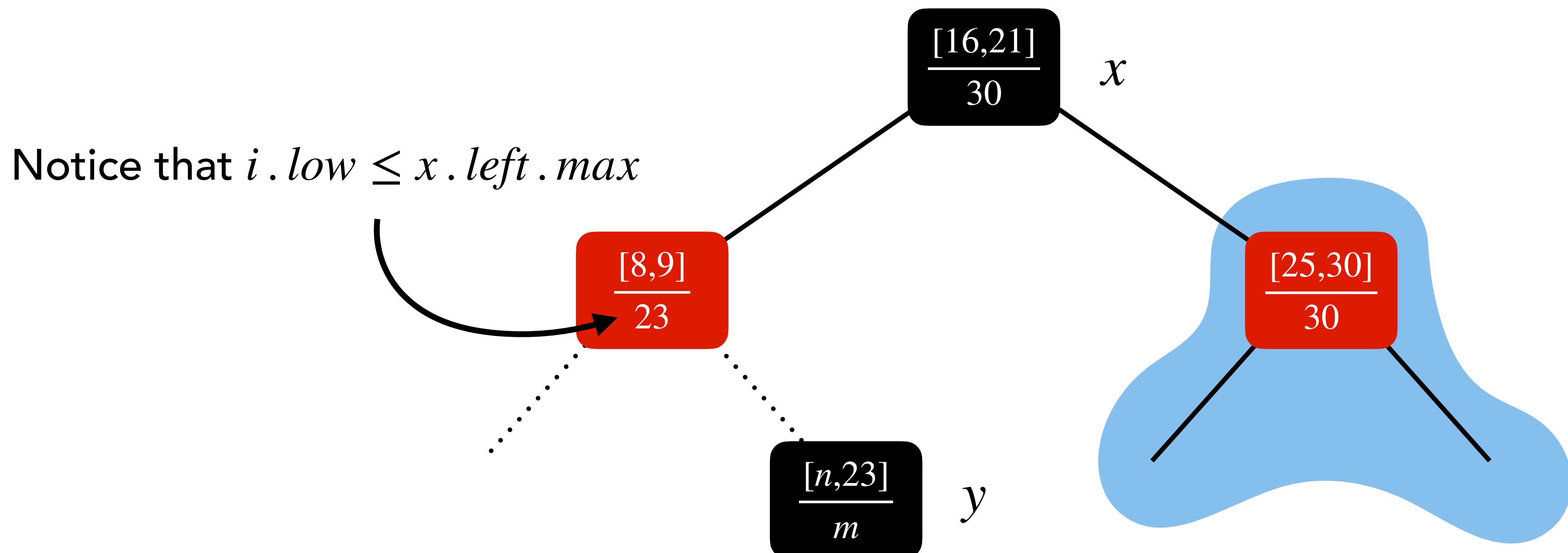
Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.



Idea Behind Interval-Search

Find the node with interval overlapping with $i = [10,14]$.



When $i.low \leq x.left.max$, go left

When $i.low > x.left.max$, go right

Interval-Search Pseudocode

Interval-Search Pseudocode

```
Interval-Search( $T, i$ ):
```

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____
4. $x = x.left$

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____
4. $x = x.left$
5. **else**

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____
4. $x = x.left$
5. **else**
6. $x = x.right$

Interval-Search Pseudocode

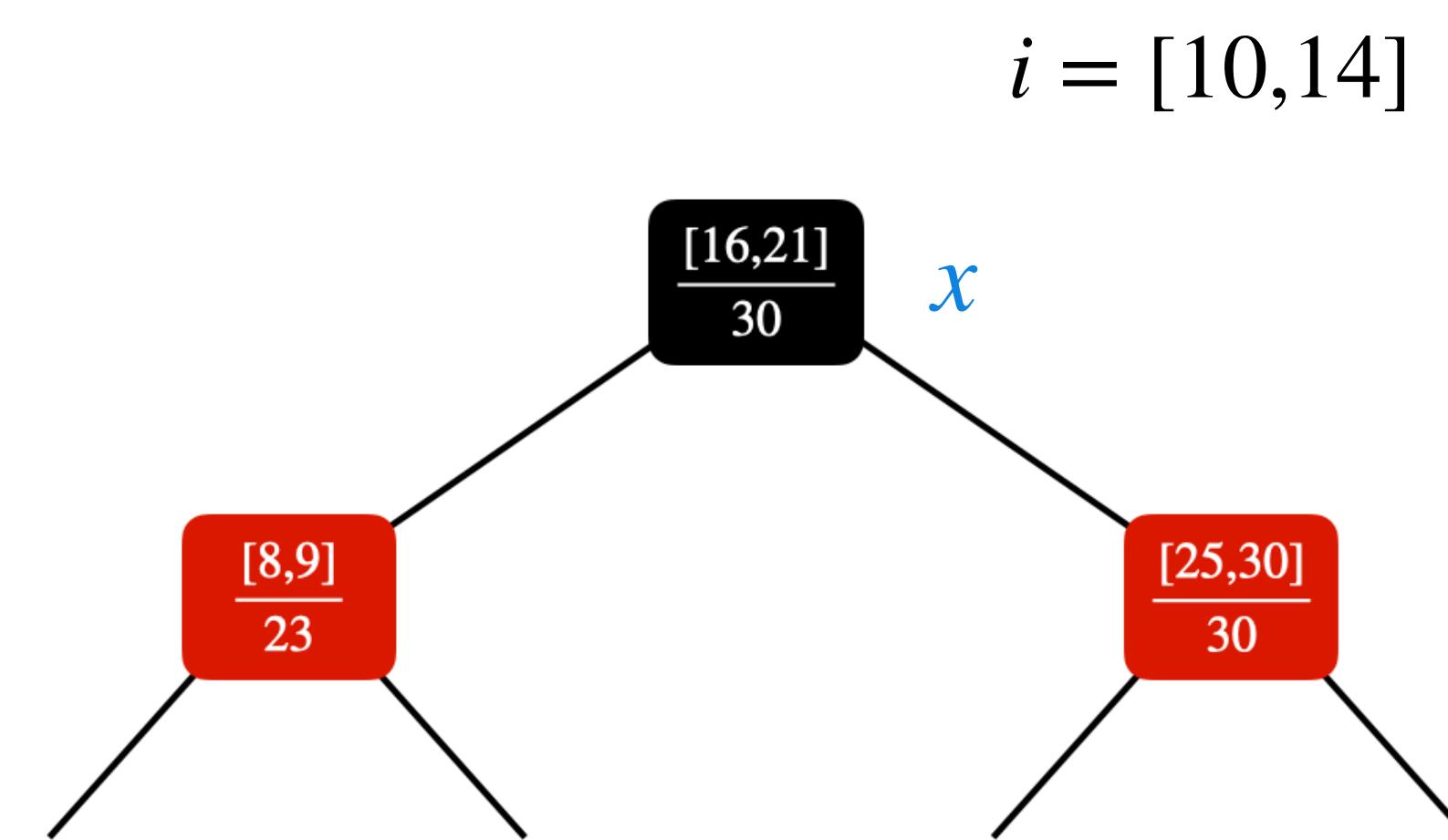
Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____
4. $x = x.left$
5. **else**
6. $x = x.right$
7. **return** x

Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** x _____
4. $x = x.left$
5. **else**
6. $x = x.right$
7. **return** x

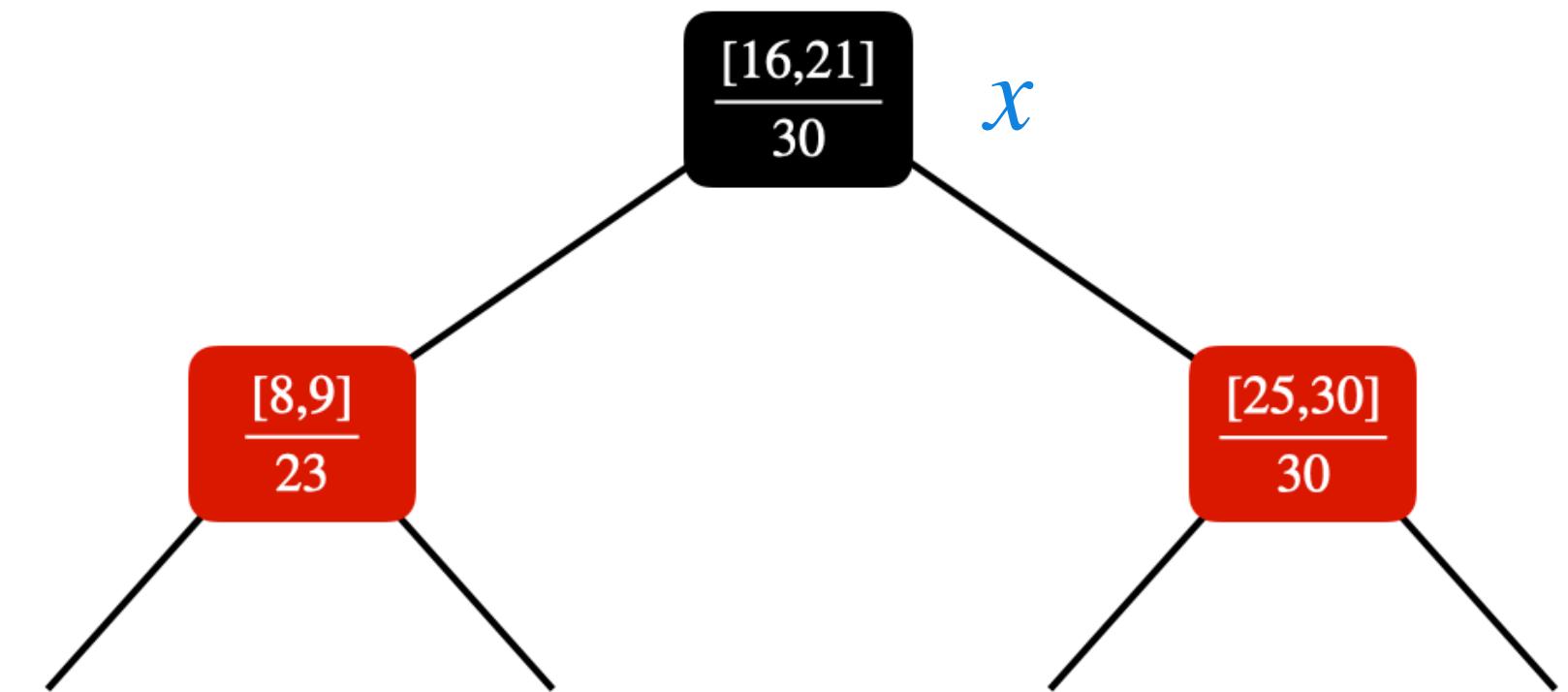


Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** $x.left \neq T.nil$ **and** $x.left.max \geq i.low$
4. $x = x.left$
5. **else**
6. $x = x.right$
7. **return** x

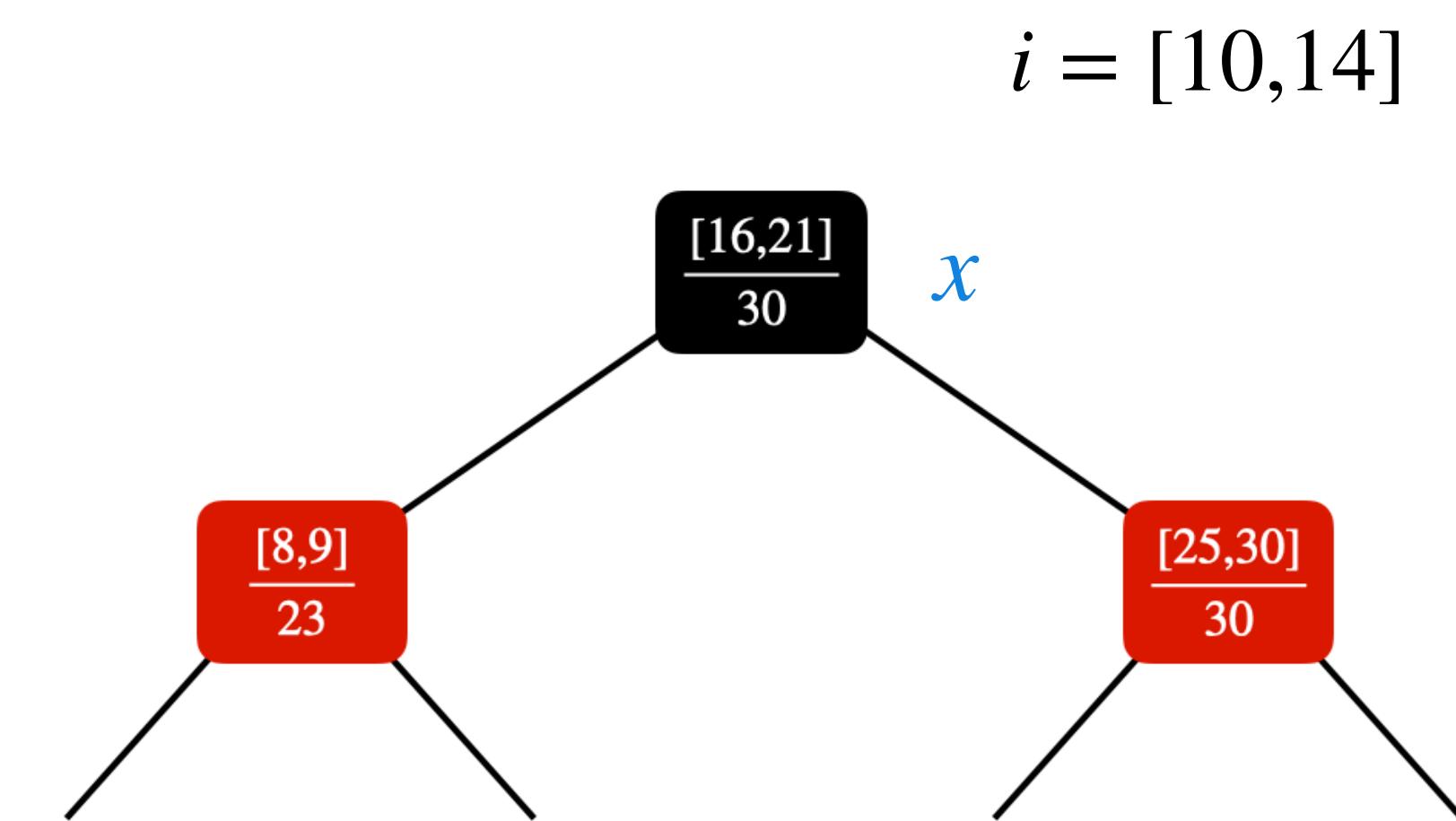
$i = [10,14]$



Interval-Search Pseudocode

Interval-Search(T, i):

1. $x = T.root$
2. **while** $x \neq T.nil$ **and** i does not overlap with $x.int$
3. **if** $x.left \neq T.nil$ **and** $x.left.max \geq i.low$
4. $x = x.left$
5. **else**
6. $x = x.right$
7. **return** x



Time Complexity: $\Theta(h) = \Theta(\log n)$ as with every iteration algorithm goes one level down.

Maintaining Subtree Max Highs

Maintaining Subtree Max Highs

Idea: Inserting or deleting an element will only affect the maximum values of its ancestor.

Maintaining Subtree Max Highs

Idea: Inserting or deleting an element will only affect the maximum values of its ancestor.
Similar to how we maintained sizes of the subtrees in the previous data structure.