Lecture 10

Interval Trees

Source: Introduction to Algorithms, CLRS



Interval



Interval

Defn: An interval |7, 7,] is an object i such that:



Interval

Defn: An interval |7, 7,] is an object i such that:

® /, and I, are integers such that t; < 1.



Interval

Defn: An interval |7, 7,] is an object i such that:
® /, and I, are integers such that t; < 1.

® i.lOW:tl andlhlgh:tz



Interval

Defn: An interval |7, 7,] is an object i such that:
® {, and 1, are integers such that #; < 1.

® i.lOW:tl andlhlgh:tz

Defn: We say intervals i and i’ overlap it i N 1" # ¢.



Interval

Defn: An interval |7, 7,] is an object i such that:
® /, and I, are integers such that t; < 1.

® i.lOW:tl andlhlgh:tz

Defn: We say intervals i and i’ overlap it i N 1" # ¢.

Example: [5,8] and [6,9] are overlapping. [3,5] and [7,10] are non-overlapping.



Testing Overlapping of Intervals



Testing Overlapping of Intervals

Overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals

Non-overlapping intervals



Testing Overlapping of Intervals

Overlapping intervals

Non-overlapping intervals



Testing Overlapping of Intervals

—— F——————— F————

Non-overlapping intervals



Testing Overlapping of Intervals

Defn: Two intervals i and 1" do not overlap it and only it i . high < i’ low or i’ high <1i.low.

Overlapping intervals

—_ —_—

Non-overlapping intervals



Testing Overlapping of Intervals

Defn: Two intervals i and 1" overlap if and only it i . low < i’ high and i". low < i.high.

Non-overlapping intervals



Interval Trees




Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x. int.



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:

® |nterval-Insert(7, x)



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:

® |nterval-Insert(7, x)

® |nterval-Delete(7, x)



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:

® |nterval-Insert(7, x)
® |nterval-Delete(7, x)

® |nterval-Search(7, i)



Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:

® |nterval-Insert(7, x)
® |nterval-Delete(7, x)

® |nterval-Search(7, i)

\

Returns an element x of T such that x. int overlaps with i.



Example of an Interval Tree

[15,23]
23

[16,21]
30

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26




Example of an Interval Tree

low values of the intervals
are the keys of the tree

[15,23]
23

[16,21]
30

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26




Example of an Interval Tree

low values of the intervals
are the keys of the tree

[15,23]
23

[16,21]
30

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26




Example of an Interval Tree

low values of the intervals
are the keys of the tree

[15,23]
23

[16,21]
30

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26




Example of an Interval Tree

[16,21]

low values of the intervals 20

are the keys of the tree Max high value of the

intervals in the subtree(x)
[25,30]
30

is stored as x . max

[15,23]
23

[17,19] [26,26]
20 26

[19,20]
20




Example of an Interval Tree

[16,21]

low values of the intervals 20

are the keys of the tree Max high value of the

intervals in the subtree(x)
[25,30]
30

is stored as x . max

[15,23]
23

[17,19] [26,26]
20 26

[19,20]
20




Interval Tree Definition




Interval Tree Definition

Defn: An interval tree is an RB-tree, where every node x contains an interval x . inf, such that



Interval Tree Definition

Defn: An interval tree is an RB-tree, where every node x contains an interval x . inf, such that

® The key of xis x.int. low.



Interval Tree Definition

Defn: An interval tree is an RB-tree, where every node x contains an interval x . inf, such that

® The key of xis x.int. low.

® Maximum of all the high values of the intervals in the subtree(x) is stored as x . ma-x.



ldea Behind Interval-Search

Interval-Search(7,[11,14]) should return NIL.

[15,23]

23

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26




ldea Behind Interval-Search

Interval-Search(7, [6,10]) can return

23

[25,30]
30

[5,8] [15,23]
10 23

[17,19] [26,26]
20 26

[6,10]

10

[19,20]
20




ldea Behind Interval-Search



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].
[16,21] clearly doesn’t overlap with [25,40].

v

[16,21]

30

[25,30]

30



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Can [25,40] overlap with an interval in the left subtree?



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Can [25,40] overlap with an interval in the left subtree?

No, because maximum high is 23.



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Can [25,40] overlap with an interval in the left subtree?

No, because maximum high is 23. Hence, every interval in this subtree will be to the left of [25,40].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Any interval overlapping with [25,40], if present must be in the right subtree.



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

When i. low > x.left . max, go right



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

[25,30]

30



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i.low < x. left . max.

[8,9] [25,30]

23 30




ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i.low < x. left . max.

[8,9] [25,30]

23 30

We will prove now that when 1. low < x.left. max, it is safe to go left.



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30

There must exist a node like this in the left subtree



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30

\

There must exist a node like this in the left subtree



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].

It n > 14, y will not overlap with [10,14].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x. left . max.

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].

It n > 14, y will not overlap with [10,14].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30 All intervals’ low will be > 14
/ due to BST properties.

Notice that i. low < x. left . max.

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].

It n > 14, y will not overlap with [10,14].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30 All intervals’ low will be > 14
/ due to BST properties.

Notice that i. low < x.left . max

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].

If n > 14, no node in the right subtree will overlap with [10,14].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x.left . max

[25,30]
30

When i.low < x. left . max, go left



ldea Behind Interval-Search

Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x.left . max

[25,30]
30

When i.low < x. left . max, go left

When i.low > x.left . max, go right



Interval-Search Pseudocode



Interval-Search Pseudocode

Interval-Search(7, i):



Interval-Search Pseudocode

Interval-Search(7, i):

1. x=1T1.root



Interval-Search Pseudocode

Interval-Search(7, i):
1. x=1T.root

2. while x # T.nil and i does not overlap with x . int



Interval-Search Pseudocode

Interval-Search(7, i):
1. x=1T.root

2. while x # T.nil and i does not overlap with x . int
3. if x



Interval-Search Pseudocode

Interval-Search(7, i):
1. x=1".root

2. while x # T'.nil and i does not overlap with x . int
3. if x

4. x=x.left



Interval-Search Pseudocode

Interval-Search(7, i):

1. x=1T1.root

2. while x # T.nil and i does not overlap with x . int
3. if x

4. x=x.left

5. else



Interval-Search Pseudocode

Interval-Search(7, i):

1. x=1T1.root

2. while x # T.nil and i does not overlap with x . int
3. if x

4. x=x.left

5. else

6.

X =x.right



Interval-Search Pseudocode

Interval-Search(7, i):

1. x=1T1.root

2. while x # T.nil and i does not overlap with x . int
3. if x

4. x=x.left

5. else

6. X =x.right

/. return Xx



Interval-Search Pseudocode

Interval-Search(7, i):
1 =[10,14]
1. x=1T.root
[16,21]

2. while x # T'.nil and i does not overlap with x . int 3
3. if x

[25,30]
4, X =X. l€ft 30
5. else
6. X =x.right
7. return Xx



Interval-Search Pseudocode

Interval-Search(7, i):
1 =[10,14]
1. x=1T.root
[16,21]

2. while x # T'.nil and i does not overlap with x . int 3

3. if x.left #T.nil and x.left . max > 1i.low

4. x=x.left =3
5. else

6. X =x.right

7. return Xx



Interval-Search Pseudocode

Interval-Search(7, i):
1 =[10,14]
1. x=1T.root
[16,21]

2. while x # T'.nil and i does not overlap with x . int 3

3. if x.left #T.nil and x.left . max > 1i.low

4. x=x.left =3
5. else

6. X =x.right

7. return Xx

Time Complexity: O(/1) = O(log n) as with every iteration algorithm goes one level down.



Maintaining Subtree Max Highs




Maintaining Subtree Max Highs

Idea: Inserting or deleting an element will only affect the maximum values of its ancestor.



Maintaining Subtree Max Highs

Idea: Inserting or deleting an element will only affect the maximum values of its ancestor.

Similar to how we maintained sizes of the subtrees in the previous data structure.



