Lecture 10

Interval Trees

Source: Introduction to Algorithms, CLRS
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Interval

Defn: An interval |7, 7,] is an object i such that:
® /, and I, are integers such that t; < 1.

® i.lOW:tl andlhlgh:tz

Defn: We say intervals i and i’ overlap it i N 1" # ¢.

Example: [5,8] and [6,9] are overlapping. [3,5] and [7,10] are non-overlapping.
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Testing Overlapping of Intervals

Defn: Two intervals i and 1" do not overlap it and only it i . high < i’ low or i’ high <1i.low.

Overlapping intervals
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Testing Overlapping of Intervals

Defn: Two intervals i and 1" overlap if and only it i . low < i’ high and i". low < i.high.

Non-overlapping intervals
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Interval Trees

Interval Trees is a form of RB-tree used to maintain a dynamic set, where every element x

contains an interval x . int. Interval tree supports the following operations:

® |nterval-Insert(7, x)
® |nterval-Delete(7, x)

® |nterval-Search(7, i)

\

Returns an element x of T such that x. int overlaps with i.
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Interval Tree Definition

Defn: An interval tree is an RB-tree, where every node x contains an interval x . inf, such that

® The key of xis x.int. low.

® Maximum of all the high values of the intervals in the subtree(x) is stored as x . ma-x.



ldea Behind Interval-Search

Interval-Search(7,[11,14]) should return NIL.
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ldea Behind Interval-Search

Interval-Search(7, [6,10]) can return
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ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].
[16,21] clearly doesn’t overlap with [25,40].
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ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Can [25,40] overlap with an interval in the left subtree?

No, because maximum high is 23. Hence, every interval in this subtree will be to the left of [25,40].



ldea Behind Interval-Search

Find the node with interval overlapping with i = [25,40].

[16,21]

30

[25,30]

30

/

Any interval overlapping with [25,40], if present must be in the right subtree.
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Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i.low < x. left . max.

[8,9] [25,30]

23 30

We will prove now that when 1. low < x.left. max, it is safe to go left.
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Find the node with interval overlapping with i = [10,14].

[16,21]

30 All intervals’ low will be > 14
/ due to BST properties.

Notice that i. low < x.left . max

[25,30]
30

It n < 14, y in the left subtree will overlap with [10,14].

If n > 14, no node in the right subtree will overlap with [10,14].
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Find the node with interval overlapping with i = [10,14].

[16,21]

30

Notice that i. low < x.left . max

[25,30]
30

When i.low < x. left . max, go left

When i.low > x.left . max, go right
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Interval-Search(7, i):
1 =[10,14]
1. x=1T.root
[16,21]

2. while x # T'.nil and i does not overlap with x . int 3
3. if x

[25,30]
4, X =X. l€ft 30
5. else
6. X =x.right
7. return Xx
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Interval-Search Pseudocode

Interval-Search(7, i):
1 =[10,14]
1. x=1T.root
[16,21]

2. while x # T'.nil and i does not overlap with x . int 3

3. if x.left #T.nil and x.left . max > 1i.low

4. x=x.left =3
5. else

6. X =x.right

7. return Xx

Time Complexity: O(/1) = O(log n) as with every iteration algorithm goes one level down.
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Maintaining Subtree Max Highs

Idea: Inserting or deleting an element will only affect the maximum values of its ancestor.

Similar to how we maintained sizes of the subtrees in the previous data structure.



